Question Number 79059 by jagoll last updated on 22/Jan/20
$$ \\ $$$$ \\ $$$$\int\:\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{sin}\:^{\mathrm{4}} \left(\mathrm{x}\right)\:\mathrm{dx}\:? \\ $$
Commented by john santu last updated on 22/Jan/20
Commented by jagoll last updated on 22/Jan/20
$$\mathrm{thanks}\:\mathrm{sir} \\ $$
Commented by mathmax by abdo last updated on 22/Jan/20
$${I}\:=\int\:{cos}^{\mathrm{2}} {x}\:{sin}^{\mathrm{2}} {x}\:{sin}^{\mathrm{2}} {x}\:{dx} \\ $$$$=\int\:\left(\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\mathrm{2}{x}\right)\right)^{\mathrm{2}} \left(\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\int\:\:\left(\frac{\mathrm{1}−{cos}\left(\mathrm{4}{x}\right)}{\mathrm{2}}\right)\left(\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{16}}\:\int\:\:\left({cos}\left(\mathrm{4}{x}\right)−\mathrm{1}\right)\left({cos}\left(\mathrm{2}{x}\right)−\mathrm{1}\right){dx}\:\Rightarrow \\ $$$$\mathrm{16}{I}\:=\int\left({cos}\left(\mathrm{4}{x}\right){cos}\left(\mathrm{2}{x}\right)−{cos}\left(\mathrm{4}{x}\right)−{cos}\left(\mathrm{2}{x}\right)\:+\mathrm{1}\right){dx} \\ $$$$=\int\:\frac{\mathrm{1}}{\mathrm{2}}\left({cos}\left(\mathrm{6}{x}\right)+{cos}\left(\mathrm{2}{x}\right)\right){dx}−\int\:{cos}\left(\mathrm{4}{x}\right){dx}−\int\:{cos}\left(\mathrm{2}{x}\right){dx}\:+{x} \\ $$$$=\frac{\mathrm{1}}{\mathrm{12}}{sin}\left(\mathrm{2}{x}\right)+\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\mathrm{2}{x}\right)−\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\mathrm{4}{x}\right)−\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\mathrm{2}{x}\right)\:+{x}\:+{c}\:\Rightarrow \\ $$$${I}\:=\frac{\mathrm{1}}{\mathrm{12}×\mathrm{16}}\:{sin}\left(\mathrm{2}{x}\right)+\frac{\mathrm{1}}{\mathrm{64}}{sin}\left(\mathrm{2}{x}\right)−\frac{\mathrm{1}}{\mathrm{64}}{sin}\left(\mathrm{4}{x}\right)−\frac{\mathrm{1}}{\mathrm{32}}{sin}\left(\mathrm{2}{x}\right)+\frac{{x}}{\mathrm{16}}\:+{C} \\ $$
Commented by mathmax by abdo last updated on 22/Jan/20
$${error}\:{of}\:{typo} \\ $$$${I}\:=\frac{\mathrm{1}}{\mathrm{12}×\mathrm{16}}{sin}\left(\mathrm{6}{x}\right)+\frac{\mathrm{1}}{\mathrm{64}}{sin}\left(\mathrm{2}{x}\right)−\frac{\mathrm{1}}{\mathrm{64}}{sin}\left(\mathrm{4}{x}\right)−\frac{\mathrm{1}}{\mathrm{32}}{sin}\left(\mathrm{2}{x}\right)+\frac{{x}}{\mathrm{16}}\:+{C} \\ $$