Menu Close

cos-2cot-1-1-x-1-x-dx-




Question Number 118575 by bramlexs22 last updated on 18/Oct/20
  ∫ cos (2cot^(−1) (√((1−x)/(1+x))) ) dx ?
cos(2cot11x1+x)dx?
Answered by benjo_mathlover last updated on 18/Oct/20
set cot^(−1) ((√((1−x)/(1+x)))) = φ ⇒(√((1−x)/(1+x))) = cot φ  ⇒ cot^2 φ = ((1−x)/(1+x)) , tan^2 φ = ((1+x)/(1−x))  ⇒sec^2 φ = 1+((1+x)/(1−x)) = (2/(1−x))   ⇒cos^2 φ = ((1−x)/2) ∧ cos 2φ = 2cos^2 φ−1  ⇒cos 2φ = 2(((1−x)/2))−1=−x  Thus ∫ cos (2cot^(−1) ((√((1−x)/(1+x))))) dx =    ∫ (−x) dx = −(x^2 /2) + c
setcot1(1x1+x)=ϕ1x1+x=cotϕcot2ϕ=1x1+x,tan2ϕ=1+x1xsec2ϕ=1+1+x1x=21xcos2ϕ=1x2cos2ϕ=2cos2ϕ1cos2ϕ=2(1x2)1=xThuscos(2cot1(1x1+x))dx=(x)dx=x22+c

Leave a Reply

Your email address will not be published. Required fields are marked *