Menu Close

cos-2x-1-sin-2x-2-sin-x-cos-x-x-0-2pi-




Question Number 85349 by john santu last updated on 21/Mar/20
(√(cos 2x)) +(√(1+sin 2x)) = 2(√(sin x+cos x))   x ∈ (0,2π )
cos2x+1+sin2x=2sinx+cosxx(0,2π)
Commented by john santu last updated on 21/Mar/20
(√(cos^2 x−sin^2 x)) + (√(sin^2 x+2sin xcos x+cos^2 x))   = 2(√(sin x+cos x))   (√((cos x−sin x)(cos x+sin x))) +(√((sin x+cos x)^2 ))   = 2(√(sin x+cos x))    { (((cos x+sin x)(cos x−sin x)≥0)),((sin x+cos x ≥ 0)) :}  (i) sin x+cos x = 0 ⇒tan x = −1  (ii) cos x−sin x =0 ⇒tan x = 1  { ((3π)/4)+kπ} ∪{−(π/4)+πn ; (π/4)+πn}  ∴ x = −(π/4)+πn ; 2πk ; k,n ∈ Z
cos2xsin2x+sin2x+2sinxcosx+cos2x=2sinx+cosx(cosxsinx)(cosx+sinx)+(sinx+cosx)2=2sinx+cosx{(cosx+sinx)(cosxsinx)0sinx+cosx0(i)sinx+cosx=0tanx=1(ii)cosxsinx=0tanx=1{3π4+kπ}{π4+πn;π4+πn}x=π4+πn;2πk;k,nZ

Leave a Reply

Your email address will not be published. Required fields are marked *