Menu Close

cos-4-x-cos-4-2x-dx-




Question Number 118436 by bramlexs22 last updated on 17/Oct/20
  ∫ cos^4 (x) cos^4 (2x) dx
cos4(x)cos4(2x)dx
Answered by benjo_mathlover last updated on 17/Oct/20
(1) cos^4 (x)= ((1/2)+(1/2)cos (2x))^2     =(1/4)+(1/2)cos (2x)+(1/4)((1/2)+(1/2)cos (4x))    = (3/8)+(1/2)cos (2x)+(1/8)cos (4x)  (2) cos^4 (2x)=((1/2)+(1/2)cos (4x))^2     =(1/4)+(1/2)cos (4x)+(1/4)((1/2)+(1/2)cos (8x))    = (3/8)+(1/2)cos (4x)+(1/8)cos (8x)  Then (1)×(2):    = (9/(64))+(3/(16))cos (4x)+(3/(64))cos (8x)+(3/(16))cos (2x)     + (1/8)cos (6x)+(1/8)cos (2x)+(1/(32))cos (10x)    + (1/(32))cos (6x)+(3/(64))cos (4x)+(1/(32))+(1/(32))cos (8x)     + (1/(128))cos (12x)+(1/(128))cos (4x)
(1)cos4(x)=(12+12cos(2x))2=14+12cos(2x)+14(12+12cos(4x))=38+12cos(2x)+18cos(4x)(2)cos4(2x)=(12+12cos(4x))2=14+12cos(4x)+14(12+12cos(8x))=38+12cos(4x)+18cos(8x)Then(1)×(2):=964+316cos(4x)+364cos(8x)+316cos(2x)+18cos(6x)+18cos(2x)+132cos(10x)+132cos(6x)+364cos(4x)+132+132cos(8x)+1128cos(12x)+1128cos(4x)
Answered by mathmax by abdo last updated on 17/Oct/20
I =∫ cos^4 x cos^4 (2x)dx ⇒I =∫(((1+cos(2x))/2))^2 (((1+cos(4x))/2))^2 dx  =(1/(16))∫ (1+cos(2x))^2 (1+cos(4x))^2 dx  =(1/(16))∫(1+2cos(2x)+cos^2 (2x))(1+2cos(4x)+cos^2 (4x))dx  16I =∫(1+2cos(4x)+cos^2 (4x)+2cos(2x)+4cos(2x)cos(4x)  +2cos(2x)cos^2 (4x) +cos^2 (2x)+2cos^2 (2x)cos(4x)+cos^2 (2x)cos^2 (4x))dx  =x +(1/2)sin(4x) +∫ cos^2 (4x)dx +sin(2x) +4∫ cos(2x)cos(4x)dx  +2∫ cos(2x)cos^2 (4x)dx +∫ cos^2 (2x)dx +2∫ cos^2 (2x)cos(4x)dx  +∫ cos^2 (2x)cos^2 (4x)dx  we have  ∫ cos^2 (4x)dx =∫ ((1+cos(8x))/2)dx =(x/2)+(1/(16))sin(8x)+c_0   ∫ cos(2x)cos(4x)dx =(1/2)∫(cos(6x)+cos(2x))dx  =(1/(12))sin(6x) +(1/4)sin(2x) +c_1   ∫ cos(2x)cos^2 (4x)dx =(1/2)∫cos(2x)(1+cos(8x))dx  =(1/4)sin(2x)+(1/2)∫ cos(2x)cos(8x)dx  =(1/4)sin(2x)+(1/4)∫(cos(10x)+cos(6x))dx  =(1/4)sin(2x)+(1/(40))sin(10x)+(1/(24))sin(6x) +c_2   ∫ cos^2 (2x)dx =(1/2)∫(1+cos(4x))dx =(x/2) +(1/8)sin(4x)+c_3   ∫ cos^2 (2x)cos(4x)dx =(1/2)∫(1+cos(4x))cos4xdx  =(1/2)∫cos(4x)dx +(1/4)∫ (1+cos(8x))dx  =(1/8)sin(4x)+(x/4) +(1/(32))sin(8x) +c_4    also  ∫ cos^2 (2x)cos^2 (4x)dx =(1/4)∫(1+cos(4x))(1+cos(8x))dx  =(1/4)∫(1+cos(8x)+cos(4x)+cos(4x)cos(8x))dx  =(x/4) +(1/(32))sin(8x)+(1/(16))sin(4x) +(1/8)∫cos(12x)+cos(4x))dx  =(x/4)+(1/(32))sin(8x)+(1/(16))sin(4x)+(1/(8.12))sin(12x)+(1/(32))sin(4x)  rest to collect the integrals..
I=cos4xcos4(2x)dxI=(1+cos(2x)2)2(1+cos(4x)2)2dx=116(1+cos(2x))2(1+cos(4x))2dx=116(1+2cos(2x)+cos2(2x))(1+2cos(4x)+cos2(4x))dx16I=(1+2cos(4x)+cos2(4x)+2cos(2x)+4cos(2x)cos(4x)+2cos(2x)cos2(4x)+cos2(2x)+2cos2(2x)cos(4x)+cos2(2x)cos2(4x))dx=x+12sin(4x)+cos2(4x)dx+sin(2x)+4cos(2x)cos(4x)dx+2cos(2x)cos2(4x)dx+cos2(2x)dx+2cos2(2x)cos(4x)dx+cos2(2x)cos2(4x)dxwehavecos2(4x)dx=1+cos(8x)2dx=x2+116sin(8x)+c0cos(2x)cos(4x)dx=12(cos(6x)+cos(2x))dx=112sin(6x)+14sin(2x)+c1cos(2x)cos2(4x)dx=12cos(2x)(1+cos(8x))dx=14sin(2x)+12cos(2x)cos(8x)dx=14sin(2x)+14(cos(10x)+cos(6x))dx=14sin(2x)+140sin(10x)+124sin(6x)+c2cos2(2x)dx=12(1+cos(4x))dx=x2+18sin(4x)+c3cos2(2x)cos(4x)dx=12(1+cos(4x))cos4xdx=12cos(4x)dx+14(1+cos(8x))dx=18sin(4x)+x4+132sin(8x)+c4alsocos2(2x)cos2(4x)dx=14(1+cos(4x))(1+cos(8x))dx=14(1+cos(8x)+cos(4x)+cos(4x)cos(8x))dx=x4+132sin(8x)+116sin(4x)+18cos(12x)+cos(4x))dx=x4+132sin(8x)+116sin(4x)+18.12sin(12x)+132sin(4x)resttocollecttheintegrals..
Answered by MJS_new last updated on 17/Oct/20
∫cos^4  x cos^4  2x dx=       [t=tan x → dx=cos^2  x dt]  =∫(((t−1)^4 (t+1)^4 )/((t^2 +1)^7 ))dt=       [Ostrogradski′s Method]  =((t(165t^(10) +935t^8 +1986t^6 +3006t^4 +1305t^2 +795))/(960(t^2 +1)^6 ))+       +((11)/(64))∫(dt/(t^2 +1)) [which = ((11)/(64))arctan t]   now put t=tan x
cos4xcos42xdx=[t=tanxdx=cos2xdt]=(t1)4(t+1)4(t2+1)7dt=[OstrogradskisMethod]=t(165t10+935t8+1986t6+3006t4+1305t2+795)960(t2+1)6++1164dtt2+1[which=1164arctant]nowputt=tanx
Answered by 1549442205PVT last updated on 17/Oct/20
cos^4 x=(((1+cos2x)/2))^2 =((1+2cos2x+cos^2 2x)/4)  Put F=∫cos^4 (x) cos^4 (2x)dx⇒4F=  ∫cos^4 2xdx+2∫cos^4 2xcos2xdx+∫cos^6 2xdx  cos^4 2x=(((1+cos4x)/2))^2 =((1+2cos4x+cos^2 4x)/4)  =(1/4)(1+2cos4x+((1+cos8x)/2))(1)  =(1−sin^2 2x)^2 =1−2sin^2 2x+sin^4 2x(2)  cos^6 2x=((1+cos4x)/2))^3 =(1/8)(1+3cos4x  +3cos^2 4x+cos^3 4x)  =(1/8)+(3/8)cos4x+(3/(16))(1+cos8x)+(1−sin^2 4x)cos4x  =(5/(16))+(3/8)cos4x+(3/(16))cos8x+(1−2sin^2 4x+sin^4 4x)cos4x(3)  From(1)(2)(3)we get  4F=∫((11)/(16))dx+(7/8)∫cos4xdx+(5/(16))∫cos8xdx  +(1/4)∫(1−sin^2 4x)d(sin4x)  +∫(1−2sin^2 2x+sin^4 2x)d(sin2x)  =((11)/(16))x+(7/(32))sin4x+(5/(128))sin8x+(1/4)sin4x  −(1/(12))sin^3 4x+sin2x−(2/3)sin^3 2x+(1/5)sin^5 2x  F=(1/4)(((11)/(16))x+(7/(32))sin4x+(5/(128))sin8x  −(1/(12))sin^3 4x+sin2x−(2/3)sin^3 2x  +(1/5)sin^5 2x)+C
cos4x=(1+cos2x2)2=1+2cos2x+cos22x4PutF=cos4(x)cos4(2x)dx4F=cos42xdx+2cos42xcos2xdx+cos62xdxcos42x=(1+cos4x2)2=1+2cos4x+cos24x4=14(1+2cos4x+1+cos8x2)(1)=(1sin22x)2=12sin22x+sin42x(2)cos62x=1+cos4x2)3=18(1+3cos4x+3cos24x+cos34x)=18+38cos4x+316(1+cos8x)+(1sin24x)cos4x=516+38cos4x+316cos8x+(12sin24x+sin44x)cos4x(3)From(1)(2)(3)weget4F=1116dx+78cos4xdx+516cos8xdx+14(1sin24x)d(sin4x)+(12sin22x+sin42x)d(sin2x)=1116x+732sin4x+5128sin8x+14sin4x112sin34x+sin2x23sin32x+15sin52xF=14(1116x+732sin4x+5128sin8x112sin34x+sin2x23sin32x+15sin52x)+C

Leave a Reply

Your email address will not be published. Required fields are marked *