Menu Close

cos-4x-cos-2x-sin-4x-cos-2x-dx-




Question Number 82954 by john santu last updated on 26/Feb/20
∫ ((cos 4x−cos 2x)/(sin 4x−cos 2x)) dx
cos4xcos2xsin4xcos2xdx
Commented by john santu last updated on 26/Feb/20
let u= cos 2x ⇒ dx = −(du/(2(√(1−u^2 ))))  ⇒∫ (( 2u^2 −u−1)/(2u(√(1−u^2 ))−u)) × (du/(−2(√(1−u^2 ))))  ⇒ ∫ ((2u^2 −u−1)/(−4u(1−u^2 )+2u(√(1−u^2 )))) du  stuck
letu=cos2xdx=du21u22u2u12u1u2u×du21u22u2u14u(1u2)+2u1u2dustuck
Commented by MJS last updated on 26/Feb/20
always try t=tan (x/2) ⇔ x=2arctan t but in  this case we have only 2nx it′s enough to  let t=tan x  Weierstrass substitution:  t=tan (x/2) → dx=((2dt)/(1+t^2 )); sin x =((2t)/(1+t^2 )); cos x =((1−t^2 )/(1+t^2 ))
alwaystryt=tanx2x=2arctantbutinthiscasewehaveonly2nxitsenoughtolett=tanxWeierstrasssubstitution:t=tanx2dx=2dt1+t2;sinx=2t1+t2;cosx=1t21+t2
Commented by john santu last updated on 26/Feb/20
o yes sir. i′m forgot this method.  thank you mister mjs
oyessir.imforgotthismethod.thankyoumistermjs
Answered by MJS last updated on 26/Feb/20
∫((cos 4x −cos 2x)/(sin 4x −cos 2x))dx=       [t=tan x → dx=(dt/(t^2 +1))]  =2∫(((t^2 −3)t^2 )/((t−1)(t+1)(t−2−(√3))(t−2+(√3))(t^2 +1)))dt=  =(1/2)∫(dt/(t−1))+(1/6)∫(dt/(t+1))+((1+(√3))/6)∫(dt/(t−2−(√3)))+((1−(√3))/6)∫(dt/(t−2+(√3)))−∫(t/(t^2 +1))dt  and all of them are easy to solve
cos4xcos2xsin4xcos2xdx=[t=tanxdx=dtt2+1]=2(t23)t2(t1)(t+1)(t23)(t2+3)(t2+1)dt==12dtt1+16dtt+1+1+36dtt23+136dtt2+3tt2+1dtandallofthemareeasytosolve

Leave a Reply

Your email address will not be published. Required fields are marked *