Menu Close

cos-7-x-dx-




Question Number 83984 by M±th+et£s last updated on 08/Mar/20
∫cos^7 (x) dx
$$\int{cos}^{\mathrm{7}} \left({x}\right)\:{dx} \\ $$
Answered by TANMAY PANACEA last updated on 08/Mar/20
∫cos^6 x×cosxdx  ∫(1−sin^2 x)^3 ×cosxdx  ∫(1−a^2 )^3 da  ∫(1−3a^2 +3a^4 −a^6  ) da  a−a^3 +((3a^5 )/5)−(a^7 /7)+c  sinx−((sin^3 x)/1)+((3sin^5 x)/5)−((sin^7 x)/7)+c
$$\int{cos}^{\mathrm{6}} {x}×{cosxdx} \\ $$$$\int\left(\mathrm{1}−{sin}^{\mathrm{2}} {x}\right)^{\mathrm{3}} ×{cosxdx} \\ $$$$\int\left(\mathrm{1}−{a}^{\mathrm{2}} \right)^{\mathrm{3}} {da} \\ $$$$\int\left(\mathrm{1}−\mathrm{3}{a}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{4}} −{a}^{\mathrm{6}} \:\right)\:{da} \\ $$$${a}−{a}^{\mathrm{3}} +\frac{\mathrm{3}{a}^{\mathrm{5}} }{\mathrm{5}}−\frac{{a}^{\mathrm{7}} }{\mathrm{7}}+{c} \\ $$$${sinx}−\frac{{sin}^{\mathrm{3}} {x}}{\mathrm{1}}+\frac{\mathrm{3}{sin}^{\mathrm{5}} {x}}{\mathrm{5}}−\frac{{sin}^{\mathrm{7}} {x}}{\mathrm{7}}+{c} \\ $$
Commented by M±th+et£s last updated on 08/Mar/20
god bless you sir
$${god}\:{bless}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *