Menu Close

cos-7x-cos-8x-1-2cos-5x-dx-




Question Number 167596 by cortano1 last updated on 20/Mar/22
  ∫ ((cos 7x−cos 8x)/(1+2cos 5x)) dx =?
$$\:\:\int\:\frac{\mathrm{cos}\:\mathrm{7x}−\mathrm{cos}\:\mathrm{8x}}{\mathrm{1}+\mathrm{2cos}\:\mathrm{5x}}\:\mathrm{dx}\:=? \\ $$
Answered by MJS_new last updated on 20/Mar/22
((cos 7x −cos 8x)/(1+2cos 5x))=       [c=cos x]  =−(((c−1)(2c+1)(4c^2 +2c−1)(16c^4 −8c^3 −16c^2 +8c+1))/((2c+1)(16c^4 −8c^3 −16c^2 +8c+1)))=  =−4c^3 +2c^2 +3c−1=cos 2x −cos 3x  ⇒  ∫((cos 7x −cos 8x)/(1+2cos 5x))dx=∫(cos 2x −cos 3x)dx=  =((sin 2x)/2)−((sin 3x)/3)+C
$$\frac{\mathrm{cos}\:\mathrm{7}{x}\:−\mathrm{cos}\:\mathrm{8}{x}}{\mathrm{1}+\mathrm{2cos}\:\mathrm{5}{x}}= \\ $$$$\:\:\:\:\:\left[{c}=\mathrm{cos}\:{x}\right] \\ $$$$=−\frac{\left({c}−\mathrm{1}\right)\left(\mathrm{2}{c}+\mathrm{1}\right)\left(\mathrm{4}{c}^{\mathrm{2}} +\mathrm{2}{c}−\mathrm{1}\right)\left(\mathrm{16}{c}^{\mathrm{4}} −\mathrm{8}{c}^{\mathrm{3}} −\mathrm{16}{c}^{\mathrm{2}} +\mathrm{8}{c}+\mathrm{1}\right)}{\left(\mathrm{2}{c}+\mathrm{1}\right)\left(\mathrm{16}{c}^{\mathrm{4}} −\mathrm{8}{c}^{\mathrm{3}} −\mathrm{16}{c}^{\mathrm{2}} +\mathrm{8}{c}+\mathrm{1}\right)}= \\ $$$$=−\mathrm{4}{c}^{\mathrm{3}} +\mathrm{2}{c}^{\mathrm{2}} +\mathrm{3}{c}−\mathrm{1}=\mathrm{cos}\:\mathrm{2}{x}\:−\mathrm{cos}\:\mathrm{3}{x} \\ $$$$\Rightarrow \\ $$$$\int\frac{\mathrm{cos}\:\mathrm{7}{x}\:−\mathrm{cos}\:\mathrm{8}{x}}{\mathrm{1}+\mathrm{2cos}\:\mathrm{5}{x}}{dx}=\int\left(\mathrm{cos}\:\mathrm{2}{x}\:−\mathrm{cos}\:\mathrm{3}{x}\right){dx}= \\ $$$$=\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{2}}−\frac{\mathrm{sin}\:\mathrm{3}{x}}{\mathrm{3}}+{C} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *