Menu Close

cos-7x-cos-8x-1-2cos-5x-dx-




Question Number 167596 by cortano1 last updated on 20/Mar/22
  ∫ ((cos 7x−cos 8x)/(1+2cos 5x)) dx =?
cos7xcos8x1+2cos5xdx=?
Answered by MJS_new last updated on 20/Mar/22
((cos 7x −cos 8x)/(1+2cos 5x))=       [c=cos x]  =−(((c−1)(2c+1)(4c^2 +2c−1)(16c^4 −8c^3 −16c^2 +8c+1))/((2c+1)(16c^4 −8c^3 −16c^2 +8c+1)))=  =−4c^3 +2c^2 +3c−1=cos 2x −cos 3x  ⇒  ∫((cos 7x −cos 8x)/(1+2cos 5x))dx=∫(cos 2x −cos 3x)dx=  =((sin 2x)/2)−((sin 3x)/3)+C
cos7xcos8x1+2cos5x=[c=cosx]=(c1)(2c+1)(4c2+2c1)(16c48c316c2+8c+1)(2c+1)(16c48c316c2+8c+1)==4c3+2c2+3c1=cos2xcos3xcos7xcos8x1+2cos5xdx=(cos2xcos3x)dx==sin2x2sin3x3+C

Leave a Reply

Your email address will not be published. Required fields are marked *