Menu Close

cos-cot-sin-tan-csc-sec-




Question Number 178181 by mathlove last updated on 13/Oct/22
((cosα cotα−sinα tanα)/(cscα secα))=?
$$\frac{{cos}\alpha\:{cot}\alpha−{sin}\alpha\:{tan}\alpha}{{csc}\alpha\:{sec}\alpha}=? \\ $$
Commented by Adedayo2000 last updated on 13/Oct/22
Recall cotα=(1/(tanα))=((cosα)/(sinα)), cscα=(1/(sinα)), secα=(1/(cosα))  =>(((cosα)(((cosα)/(sinα)))−(sinα)(((sinα)/(cosα))))/(((1/(sinα)))((1/(cosα)))))  =>((((cos^2 α)/(sinα))−((sin^2 α)/(cosα)))/(1/(sinαcosα))) =>(((cos^3 α−sin^3 α)/(sinαcosα))/(1/(sinαcosα)))  =>cos^3 α−sin^3 α   AδξδαΥo Δδξβαγo....
$${Recall}\:{cot}\alpha=\frac{\mathrm{1}}{{tan}\alpha}=\frac{{cos}\alpha}{{sin}\alpha},\:{csc}\alpha=\frac{\mathrm{1}}{{sin}\alpha},\:{sec}\alpha=\frac{\mathrm{1}}{{cos}\alpha} \\ $$$$=>\frac{\left({cos}\alpha\right)\left(\frac{{cos}\alpha}{{sin}\alpha}\right)−\left({sin}\alpha\right)\left(\frac{{sin}\alpha}{{cos}\alpha}\right)}{\left(\frac{\mathrm{1}}{{sin}\alpha}\right)\left(\frac{\mathrm{1}}{{cos}\alpha}\right)} \\ $$$$=>\frac{\frac{{cos}^{\mathrm{2}} \alpha}{{sin}\alpha}−\frac{{sin}^{\mathrm{2}} \alpha}{{cos}\alpha}}{\frac{\mathrm{1}}{{sin}\alpha{cos}\alpha}}\:=>\frac{\frac{{cos}^{\mathrm{3}} \alpha−{sin}^{\mathrm{3}} \alpha}{{sin}\alpha{cos}\alpha}}{\frac{\mathrm{1}}{{sin}\alpha{cos}\alpha}} \\ $$$$=>{cos}^{\mathrm{3}} \alpha−{sin}^{\mathrm{3}} \alpha \\ $$$$\:{A}\delta\xi\delta\alpha\Upsilon{o}\:\Delta\delta\xi\beta\alpha\gamma{o}…. \\ $$
Answered by Ar Brandon last updated on 13/Oct/22
((cosαcotα−sinαtanα)/(cscαsecα))=cos^3 α−sin^3 α
$$\frac{\mathrm{cos}\alpha\mathrm{cot}\alpha−\mathrm{sin}\alpha\mathrm{tan}\alpha}{\mathrm{csc}\alpha\mathrm{sec}\alpha}=\mathrm{cos}^{\mathrm{3}} \alpha−\mathrm{sin}^{\mathrm{3}} \alpha \\ $$
Answered by itzikhaim last updated on 13/Oct/22
=((cosα ((cosα)/(sinα))−sinα ((sinα)/(cosα)))/(cscα secα))  =((((cos^2 α)/(sinα))−((sin^2 α)/(cosα)))/(((1/(cosα)))((1/(sinα)))))=(((cos^2 α−sin^2 α)/(sinαcosα))/(1/(cosαsinα)))  =cos^2 α−sin^2 α  =cos(2α)
$$=\frac{{cos}\alpha\:\frac{{cos}\alpha}{{sin}\alpha}−{sin}\alpha\:\frac{{sin}\alpha}{{cos}\alpha}}{{csc}\alpha\:{sec}\alpha} \\ $$$$=\frac{\frac{{cos}^{\mathrm{2}} \alpha}{{sin}\alpha}−\frac{{sin}^{\mathrm{2}} \alpha}{{cos}\alpha}}{\left(\frac{\mathrm{1}}{{cos}\alpha}\right)\left(\frac{\mathrm{1}}{{sin}\alpha}\right)}=\frac{\frac{{cos}^{\mathrm{2}} \alpha−{sin}^{\mathrm{2}} \alpha}{\cancel{{sin}\alpha{cos}\alpha}}}{\frac{\mathrm{1}}{\cancel{{cos}\alpha{sin}\alpha}}} \\ $$$$={cos}^{\mathrm{2}} \alpha−{sin}^{\mathrm{2}} \alpha \\ $$$$={cos}\left(\mathrm{2}\alpha\right) \\ $$
Commented by Ar Brandon last updated on 13/Oct/22
((cos^2 α)/(sinα))−((sin^2 α)/(cosα))=((cos^3 α−sin^3 α)/(sinαcosα))
$$\frac{\mathrm{cos}^{\mathrm{2}} \alpha}{\mathrm{sin}\alpha}−\frac{\mathrm{sin}^{\mathrm{2}} \alpha}{\mathrm{cos}\alpha}=\frac{\mathrm{cos}^{\mathrm{3}} \alpha−\mathrm{sin}^{\mathrm{3}} \alpha}{\mathrm{sin}\alpha\mathrm{cos}\alpha} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *