Menu Close

cos-log-x-dx-




Question Number 152161 by peter frank last updated on 26/Aug/21
∫cos (log x)dx
cos(logx)dx
Answered by Olaf_Thorendsen last updated on 26/Aug/21
F(x) = ∫cos(logx) dx  F(e^u ) = ∫cosu e^u du  F(e^u ) = Re∫e^(iu)  e^u du  F(e^u ) = Re(((e^(iu) e^u )/(1+i))) = (1/2)Re((1−i)e^(iu) e^u )  F(e^u ) = (1/2)((cosu+sinu)e^u )  F(x) = (x/2)(cos(logx)+sin(logx))  (+C)
F(x)=cos(logx)dxF(eu)=cosueuduF(eu)=ReeiueuduF(eu)=Re(eiueu1+i)=12Re((1i)eiueu)F(eu)=12((cosu+sinu)eu)F(x)=x2(cos(logx)+sin(logx))(+C)
Commented by peter frank last updated on 26/Aug/21
thank you
thankyou
Answered by Paradoxical last updated on 26/Aug/21
Commented by peter frank last updated on 26/Aug/21
thank you
thankyou
Answered by puissant last updated on 26/Aug/21
K=∫cos(lnx)dx    u=cos(lnx) ; v′=1    ⇒ K= xcos(lnx)+∫sin(lnx)dx    u=sin(lnx) ; v′=1    ⇒ K=xcos(lnx)+xsin(lnx)−∫cos(lnx)dx    ⇒ 2K=xcos(lnx)+xsin(lnx)    ∴∵  Q=(x/2)cos(lnx)+(x/2)sin(lnx)+C
K=cos(lnx)dxu=cos(lnx);v=1K=xcos(lnx)+sin(lnx)dxu=sin(lnx);v=1K=xcos(lnx)+xsin(lnx)cos(lnx)dx2K=xcos(lnx)+xsin(lnx)∴∵Q=x2cos(lnx)+x2sin(lnx)+C
Commented by peter frank last updated on 26/Aug/21
thank you
thankyou
Answered by qaz last updated on 26/Aug/21
∫x^i dx=∫e^(ilnx) dx=(x^(i+1) /(i+1))+C=((1−i)/2)x∙e^(ilnx) +C  ⇒∫cos (lnx)dx=(1/2)xcos (lnx)+(1/2)xsin (lnx)+C
xidx=eilnxdx=xi+1i+1+C=1i2xeilnx+Ccos(lnx)dx=12xcos(lnx)+12xsin(lnx)+C

Leave a Reply

Your email address will not be published. Required fields are marked *