Menu Close

cos-n-mx-dx-




Question Number 84246 by pew_247 last updated on 10/Mar/20
∫cos^n  mx  dx =
cosnmxdx=
Answered by TANMAY PANACEA last updated on 10/Mar/20
I_(n,m) =∫cos^n mxdx=∫cos^(n−1) mx.cosmxdx  cos^(n−1) mx.((sinmx)/m)+∫(n−1)cos^(n−2) mx.msinmx.((sinmx)/m)dx  ((cos^(n−1) mxsinmx)/m)+(n−1)∫cos^(n−2) mx(1−cos^2 mx)  I_(n,m) =((cos^(n−1) mx.sinmx)/m)+(n−1)I_(n−2,m) −(n−1)I_(n,m)    I_(n,m) =((cos^(n−1) mx.sinmx)/(mn))+((n−1)/n)I_(n−2,m)   pls check
In,m=cosnmxdx=cosn1mx.cosmxdxcosn1mx.sinmxm+(n1)cosn2mx.msinmx.sinmxmdxcosn1mxsinmxm+(n1)cosn2mx(1cos2mx)In,m=cosn1mx.sinmxm+(n1)In2,m(n1)In,mIn,m=cosn1mx.sinmxmn+n1nIn2,mplscheck

Leave a Reply

Your email address will not be published. Required fields are marked *