Menu Close

cos-n-x-dx-please-i-need-workings-




Question Number 14014 by tawa tawa last updated on 26/May/17
∫cos^n (x)  dx  please i need workings.
cosn(x)dxpleaseineedworkings.
Answered by mrW1 last updated on 26/May/17
I_n =∫cos^n (x)  dx=∫cos^(n−1)  (x) dsin (x)  using ∫udv=uv−∫vdu  =sin (x) cos^(n−1)  (x)+(n−1)∫sin^2  (x) cos^(n−2)  (x)dx  =sin (x) cos^(n−1)  (x)+(n−1)∫[1−cos^2  (x)] cos^(n−2)  (x)dx  =sin (x) cos^(n−1)  (x)+(n−1)∫cos^(n−2)  (x) dx−(n−1)∫cos^n  (x) dx  ⇒I_n =sin (x) cos^(n−1)  (x)+(n−1)∫cos^(n−2)  (x) dx−(n−1)I_n   ⇒nI_n =sin (x) cos^(n−1)  (x)+(n−1)I_(n−2)   ⇒I_n =(1/n)sin (x) cos^(n−1)  (x)+((n−1)/n)I_(n−2)   ⇒I_(n−2) =(1/(n−2))sin (x) cos^(n−3)  (x)+((n−3)/(n−2))I_(n−4)   ...... if n=even ....  ⇒I_2 =(1/2)sin (x) cos (x)+(1/2)I_0   ⇒I_0 =∫dx=x+C    ...... if n=odd ....  ⇒I_3 =(1/3)sin (x) cos^2  (x)+(2/3)I_1   ⇒I_1 =∫cos (x) dx=sin (x)+C
In=cosn(x)dx=cosn1(x)dsin(x)usingudv=uvvdu=sin(x)cosn1(x)+(n1)sin2(x)cosn2(x)dx=sin(x)cosn1(x)+(n1)[1cos2(x)]cosn2(x)dx=sin(x)cosn1(x)+(n1)cosn2(x)dx(n1)cosn(x)dxIn=sin(x)cosn1(x)+(n1)cosn2(x)dx(n1)InnIn=sin(x)cosn1(x)+(n1)In2In=1nsin(x)cosn1(x)+n1nIn2In2=1n2sin(x)cosn3(x)+n3n2In4ifn=even.I2=12sin(x)cos(x)+12I0I0=dx=x+Cifn=odd.I3=13sin(x)cos2(x)+23I1I1=cos(x)dx=sin(x)+C
Commented by tawa tawa last updated on 26/May/17
God bless you sir.
Godblessyousir.
Commented by mrW1 last updated on 27/May/17
If n is even we get:  I_n =∫cos^n  (x) dx  =(1/n)sin (x) cos^(n−1)  (x)  +((n−1)/n)∙(1/(n−2))sin (x) cos^(n−3)  (x)  +((n−1)/n)∙((n−3)/(n−2))∙(1/(n−4))sin (x) cos^(n−5)  (x)  +......  +((n−1)/n)∙((n−3)/(n−2))∙((n−5)/(n−4))∙∙∙(5/6)∙(1/4)sin (x) cos^3  (x)  +((n−1)/n)∙((n−3)/(n−2))∙((n−5)/(n−4))∙∙∙(5/6)∙(3/4)∙(1/2)sin (x) cos (x)  +((n−1)/n)∙((n−3)/(n−2))∙((n−5)/(n−4))∙∙∙(5/6)∙(3/4)∙(1/2)x+C  =𝚺_(k=1) ^(n/2) (((n−1)(n−3)∙∙∙(n−2k+3)^(=1 if k=1) )/(n(n−2)∙∙∙(n−2k+2)))∙ sin (x) cos^(n−2k+1)  (x)  +(((n−1)!!)/(n!!))x+C    if n is odd we get:  I_n =∫cos^n  (x) dx  =(1/n) sin (x) cos^(n−1)  (x)  +((n−1)/n)∙(1/(n−2)) sin (x) cos^(n−3)  (x)  +((n−1)/n)∙((n−3)/(n−2))∙(1/(n−4)) sin (x) cos^(n−5)  (x)  +......  +((n−1)/n)∙((n−3)/(n−2))∙((n−5)/(n−4))∙∙∙(4/5)∙(1/3) sin (x) cos^2  (x)  +((n−1)/n)∙((n−3)/(n−2))∙((n−5)/(n−4))∙∙∙(4/5)∙(2/3)∙(1/1) sin (x) cos^0  (x)+C  =𝚺_(k=1) ^((n+1)/2) (((n−1)(n−3)∙∙∙(n−2k+1)^(=1 if k=1) )/(n(n−2)∙∙∙(n−2k+2)))∙ sin (x) cos^(n−2k+1)  (x)+C
Ifnisevenweget:In=cosn(x)dx=1nsin(x)cosn1(x)+n1n1n2sin(x)cosn3(x)+n1nn3n21n4sin(x)cosn5(x)++n1nn3n2n5n45614sin(x)cos3(x)+n1nn3n2n5n4563412sin(x)cos(x)+n1nn3n2n5n4563412x+C=n2k=1(n1)(n3)(n2k+3)=1ifk=1n(n2)(n2k+2)sin(x)cosn2k+1(x)+(n1)!!n!!x+Cifnisoddweget:In=cosn(x)dx=1nsin(x)cosn1(x)+n1n1n2sin(x)cosn3(x)+n1nn3n21n4sin(x)cosn5(x)++n1nn3n2n5n44513sin(x)cos2(x)+n1nn3n2n5n4452311sin(x)cos0(x)+C=n+12k=1(n1)(n3)(n2k+1)=1ifk=1n(n2)(n2k+2)sin(x)cosn2k+1(x)+C
Commented by tawa tawa last updated on 27/May/17
God bless you sir.
Godblessyousir.
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 27/May/17
I_n =∫cos^2 x.cos^(n−2) xdx=  =∫cos^(n−2) xdx−∫sin^2 x.cos^(n−2) xdx=  =I_(n−2) −[((−1)/(n−1))sinx.cos^(n−1) x+(1/(n−1))∫cosx.cos^(n−1) xdx=  =I_(n−2) +(1/(n−1))sinx.cos^(n−1) x−(1/(n−1))I_n +C.  ⇒I_n +(1/(n−1))I_n =I_(n−2) +(1/(n−1))sinx.cos^(n−1) x+C ⇒  (n/(n−1))I_n =I_(n−2) +(1/(n−1))sinx.cos^(n−1) x+C  ⇒I_n =((n−1)/n).I_(n−2) +(1/n)sinx.cos^(n−1) x+C.  0)I_0 =∫dx=x+C.  1)I_1 =∫cosxdx=sinx+C  2)I_2 =∫cos^2 xdx=(1/2)x+(1/4)sin2x+C  3)n>2⇒formula given above.  example:I_3   I_3 =∫cos^3 xdx=∫cosx(1−sin^2 x)dx=  =sinx−(1/3)sin^3 x+C  I_3 =((3−1)/3)I_1 +(1/3)sinx.cos^2 x=(2/3)I_1 +(1/3)sinx.cos^2 x=  =(2/3)sinx+(1/3)sinx(1−sin^2 x)=sinx−(1/3)sin^3 x+C
In=cos2x.cosn2xdx==cosn2xdxsin2x.cosn2xdx==In2[1n1sinx.cosn1x+1n1cosx.cosn1xdx==In2+1n1sinx.cosn1x1n1In+C.In+1n1In=In2+1n1sinx.cosn1x+Cnn1In=In2+1n1sinx.cosn1x+CIn=n1n.In2+1nsinx.cosn1x+C.0)I0=dx=x+C.1)I1=cosxdx=sinx+C2)I2=cos2xdx=12x+14sin2x+C3)n>2formulagivenabove.example:I3I3=cos3xdx=cosx(1sin2x)dx==sinx13sin3x+CI3=313I1+13sinx.cos2x=23I1+13sinx.cos2x==23sinx+13sinx(1sin2x)=sinx13sin3x+C
Commented by tawa tawa last updated on 27/May/17
God bless you sir.
Godblessyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *