Question Number 14014 by tawa tawa last updated on 26/May/17

Answered by mrW1 last updated on 26/May/17
![I_n =∫cos^n (x) dx=∫cos^(n−1) (x) dsin (x) using ∫udv=uv−∫vdu =sin (x) cos^(n−1) (x)+(n−1)∫sin^2 (x) cos^(n−2) (x)dx =sin (x) cos^(n−1) (x)+(n−1)∫[1−cos^2 (x)] cos^(n−2) (x)dx =sin (x) cos^(n−1) (x)+(n−1)∫cos^(n−2) (x) dx−(n−1)∫cos^n (x) dx ⇒I_n =sin (x) cos^(n−1) (x)+(n−1)∫cos^(n−2) (x) dx−(n−1)I_n ⇒nI_n =sin (x) cos^(n−1) (x)+(n−1)I_(n−2) ⇒I_n =(1/n)sin (x) cos^(n−1) (x)+((n−1)/n)I_(n−2) ⇒I_(n−2) =(1/(n−2))sin (x) cos^(n−3) (x)+((n−3)/(n−2))I_(n−4) ...... if n=even .... ⇒I_2 =(1/2)sin (x) cos (x)+(1/2)I_0 ⇒I_0 =∫dx=x+C ...... if n=odd .... ⇒I_3 =(1/3)sin (x) cos^2 (x)+(2/3)I_1 ⇒I_1 =∫cos (x) dx=sin (x)+C](https://www.tinkutara.com/question/Q14017.png)
Commented by tawa tawa last updated on 26/May/17

Commented by mrW1 last updated on 27/May/17

Commented by tawa tawa last updated on 27/May/17

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 27/May/17

Commented by tawa tawa last updated on 27/May/17
