Menu Close

cos-n-x-sinx-dx-




Question Number 148077 by mathdanisur last updated on 25/Jul/21
∫ ((cos^n x)/(sinx)) dx = ?
cosnxsinxdx=?
Answered by Olaf_Thorendsen last updated on 26/Jul/21
I_n (x) = ∫((cos^n x)/(sinx)) dx    • I_0 (x) = ∫(dx/(sinx)) dx  Let t = tan(x/2)  I_0 (x) = ∫(1/((2t)/(1+t^2 ))).((2dt)/(1+t^2 ))  I_0 (x) = ln∣t∣+C = ln∣tan(x/2)∣+C    • I_1 (x) = ∫((cosx)/(sinx)) dx = ln∣sinx∣+C    • k ≥ 2  I_k (x)−I_(k−2) (x) = ∫((cos^(k−2) x(cos^2 x−1))/(sinx)) dx  I_k (x)−I_(k−2) (x) = −∫sinx.cos^(k−2) x dx  I_k (x)−I_(k−2) (x) = (1/(k−1))cos^(k−1) x    • If k is even, k = 2p  Σ_(p=1) ^n I_(2p) (x)−Σ_(p=1) ^n I_(2p−2) (x) = Σ_(p=1) ^n (1/(2p−1))cos^(2p−1) x  I_(2n) (x)−I_0 (x) = Σ_(p=1) ^n ((cos^(2p−1) x)/(2p−1))  I_(2n) (x) = ln∣tan(x/2)∣+ Σ_(p=1) ^n ((cos^(2p−1) x)/(2p−1))+C    • If k is odd, k = 2p+1  Σ_(p=1) ^n I_(2p+1) (x)−Σ_(p=1) ^n I_(2p−1) (x) = Σ_(p=1) ^n (1/(2p))cos^(2p) x  I_(2n+1) (x)−I_1 (x) = (1/2)Σ_(p=1) ^n ((cos^(2p) x)/p)  I_(2n+1) (x) = ln∣sinx∣+(1/2) Σ_(p=1) ^n ((cos^(2p) x)/p)+C
In(x)=cosnxsinxdxI0(x)=dxsinxdxLett=tanx2I0(x)=12t1+t2.2dt1+t2I0(x)=lnt+C=lntanx2+CI1(x)=cosxsinxdx=lnsinx+Ck2Ik(x)Ik2(x)=cosk2x(cos2x1)sinxdxIk(x)Ik2(x)=sinx.cosk2xdxIk(x)Ik2(x)=1k1cosk1xIfkiseven,k=2pnp=1I2p(x)np=1I2p2(x)=np=112p1cos2p1xI2n(x)I0(x)=np=1cos2p1x2p1I2n(x)=lntanx2+np=1cos2p1x2p1+CIfkisodd,k=2p+1np=1I2p+1(x)np=1I2p1(x)=np=112pcos2pxI2n+1(x)I1(x)=12np=1cos2pxpI2n+1(x)=lnsinx+12np=1cos2pxp+C
Commented by mathdanisur last updated on 25/Jul/21
Thankyou Sir, answer.?
ThankyouSir,answer.?
Commented by puissant last updated on 26/Jul/21
prof desole mais I_1 =ln∣sin(x)∣+C  car (ln(u))′=((u′)/u)  avec  u=sin(x)..
profdesolemaisI1=lnsin(x)+Ccar(ln(u))=uuavecu=sin(x)..
Commented by Olaf_Thorendsen last updated on 26/Jul/21
Bien vu !  (mais je ne suis pas prof).
Bienvu!(maisjenesuispasprof).
Commented by puissant last updated on 26/Jul/21
d′accord monsieur olaf..
daccordmonsieurolaf..
Answered by mathmax by abdo last updated on 25/Jul/21
A_n =∫  ((cos^n x)/(sinx))dx ⇒A_(2n) =∫  ((cos^(2n) x)/(sinx))dx  =∫  (((1−sin^2 x)^n )/(sinx))dx =(−1)^n  ∫  (((sin^2 x−1)^n )/(sinx))dx  =(−1)^n  ∫  ((Σ_(k=0) ^n  C_n ^k  sin^(2k) x(−1)^(n−k) )/(sinx))dx  =Σ_(k=0) ^n  C_n ^k  (−1)^k   ∫sin^(2k−1)  x dx  =∫ (dx/(sinx)) +Σ_(k=0) ^n  C_n ^k (−1)^k   ∫  (((e^(ix) −e^(−ix) )/2))^(2k−1) dx  =∫  (dx/(sinx)) +Σ_(k=0) ^n  (−1)^k  C_n ^k  (1/2^(2k−1) )∫ Σ_(p=0) ^(2k−1)  (e^(ix) )^p  (−e^(−ix) )^(2k−1−p ) dx  =∫ (dx/(sinx)) +Σ_(k=0) ^n  (((−1)^k )/2^(2k−1) )C_n ^k  (Σ_(p=0) ^(2k−1) (−1)^(2k−1−p)  ∫  e^(ipx)  e^(−i(2k−1)x+ipxdx)   =∫ (dx/(sinx)) +Σ_(k=0) ^n  (((−1)^k )/2^(2k−1) )C_n ^k (Σ_(p=0) ^(2k−1) (−1)^(p+1) ∫  e^(i(2p−2k+1)x) dx)  =∫ (dx/(sinx))+Σ_(k=0) ^n  (((−1)^k )/2^(2k−1) )C_n ^k  (Σ_(p=0) ^(2k−1) (((−1)^(p+1) )/(i(2p−2k+1)))e^(i(2p−2k+1)x) +λ)  rest to find A_(2n+1) ....be continued....
An=cosnxsinxdxA2n=cos2nxsinxdx=(1sin2x)nsinxdx=(1)n(sin2x1)nsinxdx=(1)nk=0nCnksin2kx(1)nksinxdx=k=0nCnk(1)ksin2k1xdx=dxsinx+k=0nCnk(1)k(eixeix2)2k1dx=dxsinx+k=0n(1)kCnk122k1p=02k1(eix)p(eix)2k1pdx=dxsinx+k=0n(1)k22k1Cnk(p=02k1(1)2k1peipxei(2k1)x+ipxdx=dxsinx+k=0n(1)k22k1Cnk(p=02k1(1)p+1ei(2p2k+1)xdx)=dxsinx+k=0n(1)k22k1Cnk(p=02k1(1)p+1i(2p2k+1)ei(2p2k+1)x+λ)resttofindA2n+1.becontinued.
Commented by mathdanisur last updated on 25/Jul/21
Thankyou Sir, answer.?
ThankyouSir,answer.?
Commented by mathmax by abdo last updated on 25/Jul/21
A_(2n) =∫ (dx/(sinx))+Σ_(k=1) ^n (....)
A2n=dxsinx+k=1n(.)

Leave a Reply

Your email address will not be published. Required fields are marked *