Question Number 86716 by john santu last updated on 30/Mar/20
$$\mathrm{cos}\:\left(\frac{\pi}{\mathrm{17}}\right)×\mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{17}}\right)×\mathrm{cos}\:\left(\frac{\mathrm{4}\pi}{\mathrm{17}}\right)×\mathrm{cos}\:\left(\frac{\mathrm{8}\pi}{\mathrm{17}}\right)\:= \\ $$
Commented by jagoll last updated on 30/Mar/20
$$\frac{\mathrm{cos}\:\mathrm{x}\:\mathrm{cos}\:\mathrm{2x}\:\mathrm{cos}\:\mathrm{4x}\:\mathrm{cos}\:\mathrm{8x}}{\mathrm{2sin}\:\mathrm{x}}\:×\:\mathrm{2sin}\:\mathrm{x}\:\: \\ $$$$\frac{\mathrm{sin}\:\mathrm{2x}\:\mathrm{cos}\:\mathrm{2x}\:\mathrm{cos}\:\mathrm{4x}\:\mathrm{cos}\:\mathrm{8x}}{\mathrm{2sin}\:\mathrm{x}}\:=\: \\ $$$$\frac{\mathrm{sin}\:\mathrm{4x}\:\mathrm{cos}\:\mathrm{4x}\:\mathrm{cos}\:\mathrm{8x}}{\mathrm{4sin}\:\mathrm{x}}\:=\: \\ $$$$\frac{\mathrm{sin}\:\mathrm{8x}\:\mathrm{cos}\:\mathrm{8x}}{\mathrm{8sin}\:\mathrm{x}}\:=\:\frac{\mathrm{sin}\:\mathrm{16x}}{\mathrm{16sin}\:\mathrm{x}}\:=\:\frac{\mathrm{sin}\:\frac{\pi}{\mathrm{17}}}{\mathrm{16}\:\mathrm{sin}\:\frac{\pi}{\mathrm{17}}}\: \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{16}} \\ $$$$\left[\:\mathrm{sin}\:\frac{\pi}{\mathrm{17}}\:=\:\mathrm{sin}\:\left(\pi−\frac{\pi}{\mathrm{17}}\right)\:=\:\mathrm{sin}\:\left(\frac{\mathrm{16}\pi}{\mathrm{17}}\right)\:\right] \\ $$
Commented by mathmax by abdo last updated on 30/Mar/20
$${let}\:{A}\:={cos}\left(\frac{\pi}{\mathrm{17}}\right){cos}\left(\frac{\mathrm{2}\pi}{\mathrm{17}}\right){cos}\left(\frac{\mathrm{4}\pi}{\mathrm{17}}\right){cos}\left(\frac{\mathrm{8}\pi}{\mathrm{17}}\right)\:{we}\:{have} \\ $$$${sin}\left(\frac{\pi}{\mathrm{17}}\right){A}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{17}}\right){cos}\left(\frac{\mathrm{2}\pi}{\mathrm{17}}\right){cos}\left(\frac{\mathrm{4}\pi}{\mathrm{17}}\right){cos}\left(\frac{\mathrm{8}\pi}{\mathrm{17}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}{sin}\left(\frac{\mathrm{4}\pi}{\mathrm{17}}\right){cos}\left(\frac{\mathrm{4}\pi}{\mathrm{17}}\right){cos}\left(\frac{\mathrm{8}\pi}{\mathrm{17}}\right)\:=\frac{\mathrm{1}}{\mathrm{8}}{sin}\left(\frac{\mathrm{8}\pi}{\mathrm{17}}\right){cos}\left(\frac{\mathrm{8}\pi}{\mathrm{17}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{16}}{sin}\left(\frac{\mathrm{16}\pi}{\mathrm{17}}\right)\:=\frac{\mathrm{1}}{\mathrm{16}}{sin}\left(\pi−\frac{\pi}{\mathrm{17}}\right)\:=\frac{\mathrm{1}}{\mathrm{16}}{sin}\left(\frac{\pi}{\mathrm{17}}\right)\:\:\Rightarrow \\ $$$${A}\:=\frac{\mathrm{1}}{\mathrm{16}} \\ $$
Answered by redmiiuser last updated on 30/Mar/20
$$\frac{\mathrm{1}}{\mathrm{16}} \\ $$
Answered by TANMAY PANACEA. last updated on 30/Mar/20
$${p}={cosacos}\mathrm{2}{acos}\mathrm{4}{acos}\mathrm{8}{a}\:\:\left[{a}=\frac{\pi}{\mathrm{17}}\right] \\ $$$$\mathrm{2}{psina}=\left(\mathrm{2}{sinacosa}\right){cos}\mathrm{2}{acos}\mathrm{4}{acos}\mathrm{8}{a} \\ $$$$={sin}\mathrm{2}{acos}\mathrm{2}{acos}\mathrm{4}{acos}\mathrm{8}{a} \\ $$$$\mathrm{2}^{\mathrm{2}} {psina}=\left(\mathrm{2}{sin}\mathrm{2}{acos}\mathrm{2}{a}\right){cos}\mathrm{4}{acos}\mathrm{8}{a} \\ $$$$\mathrm{2}^{\mathrm{2}} {psina}={sin}\mathrm{4}{acos}\mathrm{4}{acos}\mathrm{8}{a} \\ $$$$\mathrm{2}^{\mathrm{3}} {psina}=\left(\mathrm{2}{sin}\mathrm{4}{acos}\mathrm{4}{a}\right){cos}\mathrm{8}{a} \\ $$$$\mathrm{2}^{\mathrm{3}} {psina}={sin}\mathrm{8}{acos}\mathrm{8}{a} \\ $$$$\mathrm{2}^{\mathrm{4}} {psina}=\left(\mathrm{2}{sin}\mathrm{8}{acos}\mathrm{8}{a}\right) \\ $$$$\mathrm{2}^{\mathrm{4}} {psina}={sin}\mathrm{16}{a} \\ $$$$\mathrm{16}×{p}×{sina}={sin}\left(\mathrm{17}{a}−{a}\right) \\ $$$${p}=\frac{\mathrm{1}}{\mathrm{16}{sina}}×{sin}\left(\pi−{a}\right) \\ $$$${p}=\frac{{sina}}{\mathrm{16}{sina}}=\frac{\mathrm{1}}{\mathrm{16}} \\ $$
Commented by peter frank last updated on 31/Mar/20
$${thank}\:{you}\:{both} \\ $$