cos-pi-18-cos-3pi-18-cos-5pi-18-cos-7pi-18- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 186741 by cortano12 last updated on 09/Feb/23 cos(π18).cos(3π18).cos(5π18).cos(7π18)=? Answered by pablo1234523 last updated on 09/Feb/23 12[cos8π18+cos6π18]⋅12[cos8π18+cos2π18]=14(cos24π9+cos4π9cosπ9+cos3π9cos4π9+cos3π9cosπ9)=18(1+cos8π9+cos5π9+cos3π9+cos7π9+cosπ9+cos4π9+cos2π9)=18(1−cosπ9−cos4π9+cos3π9−cos2π9+cosπ9+cos4π9+cos2π9)=18(1+cos3π9)=18(1+cosπ3)=18(1+12)=18(32)=316 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Let-z-C-so-1-z-2-lt-1-Prove-that-2-1-z-2-1-Next Next post: f-z-z-Re-z-z-Im-z-z-f-z-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.