Menu Close

cos-pi-5-with-solution-pls-




Question Number 156126 by VIDDD last updated on 08/Oct/21
   cos(π/5)=...?  with solution pls
cosπ5=?withsolutionpls
Commented by cortano last updated on 08/Oct/21
(π/5)=36° ⇒cos 72°=2cos 36°−1  ⇒cos 36°=(√((1+cos 72°)/2))=(√((1+sin 18°)/2))
π5=36°cos72°=2cos36°1cos36°=1+cos72°2=1+sin18°2
Answered by puissant last updated on 08/Oct/21
a=cos(π/5)  ;  b=cos((2π)/5)  and  −a=cos((4π)/5)  We have cos((2π)/5)= 2cos^2 (π/5) − 1  ⇒ { ((b=2a^2 −1)),((−a=2b^2 −1)) :}  ⇒  a+b=2(a^2 −b^2 )  ⇒ a+b=2(a+b)(a−b)   ⇒ 1=a−b ⇒ b=a−(1/2)..  ⇒ a−(1/2) = 2a^2 −1   ⇒ 4a^2 −2a−1=0  Δ=4−4(−1)(4)=20 → (√Δ)=2(√5)..  a_1 =((−2−2(√5))/8)=((−1−(√5))/4)<0 (impossible)  a_2 =((2+2(√5))/8)=((1+(√5))/4)=cos(π/5)  cos((2π)/5)=cos(π/5)−(1/2)=(((√5)−1)/4)    ∴∵cos((π/5))=((1+(√5))/4)  and cos(((2π)/5))=(((√5)−1)/4)..                 ..........Le puissant...........
a=cosπ5;b=cos2π5anda=cos4π5Wehavecos2π5=2cos2π51{b=2a21a=2b21a+b=2(a2b2)a+b=2(a+b)(ab)1=abb=a12..a12=2a214a22a1=0Δ=44(1)(4)=20Δ=25..a1=2258=154<0(impossible)a2=2+258=1+54=cosπ5cos2π5=cosπ512=514∴∵cos(π5)=1+54andcos(2π5)=514...Lepuissant..
Commented by VIDDD last updated on 09/Oct/21
  thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *