Menu Close

cos-pi-65-cos-2pi-65-cos-4pi-65-cos-8pi-65-cos-16pi-65-cos-32pi-65-




Question Number 115455 by bemath last updated on 26/Sep/20
cos ((π/(65))).cos (((2π)/(65))).cos (((4π)/(65))).cos (((8π)/(65))).cos (((16π)/(65))).cos (((32π)/(65)))=?
$$\mathrm{cos}\:\left(\frac{\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{4}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{8}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{16}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{32}\pi}{\mathrm{65}}\right)=? \\ $$
Commented by Adel last updated on 13/Jan/21
cos ((π/(65))).cos (((2π)/(65))).cos (((4π)/(65))).cos (((8π)/(65))).cos (((16π)/(65))).cos (((32π)/(65)))=?
$$\mathrm{cos}\:\left(\frac{\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{2}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{4}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{8}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{16}\pi}{\mathrm{65}}\right).\mathrm{cos}\:\left(\frac{\mathrm{32}\pi}{\mathrm{65}}\right)=? \\ $$
Answered by TANMAY PANACEA last updated on 26/Sep/20
θ=(π/(65))  S=cosθcos2θ....cos32θ  2Ssinθ=(2sinθcosθ)cos2θcos4θcos8θcos16θcos32θ  2^2 Ssinθ=(2sin2θcos2θ)cos4θcos8θcos16θcos32θ  2^3 Ssinθ=(2sin4θcos4θ)cos8θcos16θcos32θ  2^4 Ssinθ=(2sin8θcos8θ)cos16θcos32θ  2^5 Ssinθ=(2sin16θcos16θ)cos32θ  2^6 Ssinθ=(2sin32θcos32θ)  2^6 Ssinθ=sin64θ  now sin64θ=sin(65θ−θ)=sin(π−θ)=sinθ  so  2^6 Ssinθ=sinθ  S=(1/2^6 )=(1/(64))
$$\theta=\frac{\pi}{\mathrm{65}} \\ $$$${S}={cos}\theta{cos}\mathrm{2}\theta….{cos}\mathrm{32}\theta \\ $$$$\mathrm{2}{Ssin}\theta=\left(\mathrm{2}{sin}\theta{cos}\theta\right){cos}\mathrm{2}\theta{cos}\mathrm{4}\theta{cos}\mathrm{8}\theta{cos}\mathrm{16}\theta{cos}\mathrm{32}\theta \\ $$$$\mathrm{2}^{\mathrm{2}} {Ssin}\theta=\left(\mathrm{2}{sin}\mathrm{2}\theta{cos}\mathrm{2}\theta\right){cos}\mathrm{4}\theta{cos}\mathrm{8}\theta{cos}\mathrm{16}\theta{cos}\mathrm{32}\theta \\ $$$$\mathrm{2}^{\mathrm{3}} {Ssin}\theta=\left(\mathrm{2}{sin}\mathrm{4}\theta{cos}\mathrm{4}\theta\right){cos}\mathrm{8}\theta{cos}\mathrm{16}\theta{cos}\mathrm{32}\theta \\ $$$$\mathrm{2}^{\mathrm{4}} {Ssin}\theta=\left(\mathrm{2}{sin}\mathrm{8}\theta{cos}\mathrm{8}\theta\right){cos}\mathrm{16}\theta{cos}\mathrm{32}\theta \\ $$$$\mathrm{2}^{\mathrm{5}} {Ssin}\theta=\left(\mathrm{2}{sin}\mathrm{16}\theta{cos}\mathrm{16}\theta\right){cos}\mathrm{32}\theta \\ $$$$\mathrm{2}^{\mathrm{6}} {Ssin}\theta=\left(\mathrm{2}{sin}\mathrm{32}\theta{cos}\mathrm{32}\theta\right) \\ $$$$\mathrm{2}^{\mathrm{6}} {Ssin}\theta={sin}\mathrm{64}\theta \\ $$$${now}\:{sin}\mathrm{64}\theta={sin}\left(\mathrm{65}\theta−\theta\right)={sin}\left(\pi−\theta\right)={sin}\theta \\ $$$${so} \\ $$$$\mathrm{2}^{\mathrm{6}} {Ssin}\theta={sin}\theta \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{6}} }=\frac{\mathrm{1}}{\mathrm{64}} \\ $$$$ \\ $$
Commented by bemath last updated on 26/Sep/20
santuyy...gave kudos
$${santuyy}…{gave}\:{kudos} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *