Menu Close

cos-pi-7-cos-2pi-7-cos-3pi-7-




Question Number 112645 by bemath last updated on 09/Sep/20
cos ((π/7))−cos (((2π)/7))+cos (((3π)/7)) =?
cos(π7)cos(2π7)+cos(3π7)=?
Answered by john santu last updated on 09/Sep/20
let p = (π/7) and X=cos p−cos 2p+cos 3p  multiply by 2sin p  2sin p X = 2sin p(cos p−cos 2p+cos 3p)  2sin p X=sin 2p−2sin pcos 2p+2sin pcos 3p  2sin p X=sin 2p−(sin 3p−sin p)+sin 4p−sin 2p  2sin p X=sin 4p+sin p−sin 3p  2sin p X= 2cos (((7p)/2))sin((p/2))+sin p   consider cos (((7p)/2))=cos ((7/2).(π/7))=0  so we get 2sin p X = sin p  X = (1/2).
letp=π7andX=cospcos2p+cos3pmultiplyby2sinp2sinpX=2sinp(cospcos2p+cos3p)2sinpX=sin2p2sinpcos2p+2sinpcos3p2sinpX=sin2p(sin3psinp)+sin4psin2p2sinpX=sin4p+sinpsin3p2sinpX=2cos(7p2)sin(p2)+sinpconsidercos(7p2)=cos(72.π7)=0soweget2sinpX=sinpX=12.
Answered by 1549442205PVT last updated on 09/Sep/20
P=cos ((π/7))−cos (((2π)/7))+cos (((3π)/7))  =cos(π/7)−(2cos^2 (π/7)−1)+4cos^3 (π/7)−3cos(π/7)  =4cos^3 (π/7)−2cos^2 (π/7)−2cos(π/7)+1(1)  On the other hands,we have  4cos^3 (π/7)−3cos(π/7)=cos((3π)/7)=−cos(π−((3π)/7))  =−cos((4π)/7)=1−2cos^2 ((2π)/7)=1−2(2cos^2 (π/7)−1)^2   =1−2(4cos^4 (π/7)−4cos^2 (π/7)+1)  =−8cos^4 (π/7)+8cos^2 (π/7)−1.Hence,we get  8cos^4 (π/7)+4cos^3 (π/7)−8cos^2 (π/7)−3cos(π/7)+1=0  ⇔(cos(π/7)+1)(8cos^3 (π/7)−4cos^2 (π/7)−4cos(π/7)+1)=0  ⇔8cos^3 (π/7)−4cos^2 (π/7)−4cos(π/7)+1=0  ⇒4cos^3 (π/7)−2cos^2 (π/7)−2cos(π/7)+(1/2)=0(2)  From (1)and (2) we get  P=(4cos^3 (π/7)−2cos^2 (π/7)−2cos(π/7)+(1/2))+(1/2)  =0+(1/2).Thus,P=cos ((𝛑/7))−cos (((2𝛑)/7))+cos (((3𝛑)/7))=(1/( 2))
P=cos(π7)cos(2π7)+cos(3π7)=cosπ7(2cos2π71)+4cos3π73cosπ7=4cos3π72cos2π72cosπ7+1(1)Ontheotherhands,wehave4cos3π73cosπ7=cos3π7=cos(π3π7)=cos4π7=12cos22π7=12(2cos2π71)2=12(4cos4π74cos2π7+1)=8cos4π7+8cos2π71.Hence,weget8cos4π7+4cos3π78cos2π73cosπ7+1=0(cosπ7+1)(8cos3π74cos2π74cosπ7+1)=08cos3π74cos2π74cosπ7+1=04cos3π72cos2π72cosπ7+12=0(2)From(1)and(2)wegetP=(4cos3π72cos2π72cosπ7+12)+12=0+12.\boldsymbolThus,\boldsymbolP=\boldsymbolcos(\boldsymbolπ7)\boldsymbolcos(2\boldsymbolπ7)+\boldsymbolcos(3\boldsymbolπ7)=12

Leave a Reply

Your email address will not be published. Required fields are marked *