cos-pi-7-cos-2pi-7-cos-3pi-7- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 112645 by bemath last updated on 09/Sep/20 cos(π7)−cos(2π7)+cos(3π7)=? Answered by john santu last updated on 09/Sep/20 letp=π7andX=cosp−cos2p+cos3pmultiplyby2sinp2sinpX=2sinp(cosp−cos2p+cos3p)2sinpX=sin2p−2sinpcos2p+2sinpcos3p2sinpX=sin2p−(sin3p−sinp)+sin4p−sin2p2sinpX=sin4p+sinp−sin3p2sinpX=2cos(7p2)sin(p2)+sinpconsidercos(7p2)=cos(72.π7)=0soweget2sinpX=sinpX=12. Answered by 1549442205PVT last updated on 09/Sep/20 P=cos(π7)−cos(2π7)+cos(3π7)=cosπ7−(2cos2π7−1)+4cos3π7−3cosπ7=4cos3π7−2cos2π7−2cosπ7+1(1)Ontheotherhands,wehave4cos3π7−3cosπ7=cos3π7=−cos(π−3π7)=−cos4π7=1−2cos22π7=1−2(2cos2π7−1)2=1−2(4cos4π7−4cos2π7+1)=−8cos4π7+8cos2π7−1.Hence,weget8cos4π7+4cos3π7−8cos2π7−3cosπ7+1=0⇔(cosπ7+1)(8cos3π7−4cos2π7−4cosπ7+1)=0⇔8cos3π7−4cos2π7−4cosπ7+1=0⇒4cos3π7−2cos2π7−2cosπ7+12=0(2)From(1)and(2)wegetP=(4cos3π7−2cos2π7−2cosπ7+12)+12=0+12.\boldsymbolThus,\boldsymbolP=\boldsymbolcos(\boldsymbolπ7)−\boldsymbolcos(2\boldsymbolπ7)+\boldsymbolcos(3\boldsymbolπ7)=12 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: question-proposed-by-A8-15-0-1-ln-ln-1-x-1-x-dx-Next Next post: x-1-x-1-x-1377- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.