Menu Close

cos-sin-cos-d-




Question Number 102183 by bemath last updated on 07/Jul/20
∫ ((cos θ)/(sin θ−cos θ)) dθ ?
cosθsinθcosθdθ?
Answered by Dwaipayan Shikari last updated on 07/Jul/20
(1/2)log(sinθ−cosθ)−(θ/2)+C  I=∫((cosθ)/(sinθ−cosθ))dθ  I=∫((sinθ)/(sinθ−cosθ))−1dθ  2I=∫((sinθ+cosθ)/(sinθ−cosθ))−1dθ  I=(1/2)log(sinθ−cosθ)−(θ/2)+Constant
12log(sinθcosθ)θ2+CI=cosθsinθcosθdθI=sinθsinθcosθ1dθ2I=sinθ+cosθsinθcosθ1dθI=12log(sinθcosθ)θ2+Constant
Answered by bobhans last updated on 07/Jul/20
((cos θ)/(sin θ−cos θ)) × ((sin θ+cos θ)/(sin θ+cos θ)) = (((1/2)sin 2θ+cos^2 θ)/(−cos 2θ))  (1/4)∫((d(cos 2θ))/(cos 2θ))−∫((cos^2 θ)/(cos 2θ)) dθ =   (1/4) ln∣cos 2θ∣ −∫(((1/2)+(1/2)cos 2θ)/(cos 2θ)) dθ =  (1/4)ln∣cos 2θ∣−(1/2)∫sec 2θ−(1/2)θ + c =  (1/4)ln∣cos 2θ∣−(1/4)ln∣sec 2θ+tan 2θ∣−(1/2)θ + c
cosθsinθcosθ×sinθ+cosθsinθ+cosθ=12sin2θ+cos2θcos2θ14d(cos2θ)cos2θcos2θcos2θdθ=14lncos2θ12+12cos2θcos2θdθ=14lncos2θ12sec2θ12θ+c=14lncos2θ14lnsec2θ+tan2θ12θ+c
Answered by 1549442205 last updated on 07/Jul/20
Putting t=tan(θ/2)⇒dt=(1/2)(1+tan^2 (θ/2))dθ=(1/2)(1+t^2 )dθ  cosθ=((1−t^2 )/(1+t^2 )), sinθ=((2t)/(1+t^2 )), dθ=((2dt)/(1+t^2 ))  F=2∫((1−t^2 )/((t^2 +2t−1)(1+t^2 )))dt==−∫((t+1)/(t^2 +1))dt+∫((t+1)/(t^2 +2t−1))dt  =−∫(dt/(1+t^2 ))−(1/2)∫((d(t^2 +1))/(t^2 +1))+(1/2)∫((d(t^2 +2t−1))/(t^2 +2t−1))  =−arctan t−(1/2)ln(1+t^2 )+(1/2)ln∣t^2 +2t−1∣  ((−𝛉)/2)−(1/2)ln(tan^2 (𝛉/2)+1)+(1/2)ln∣tan^2 (𝛉/2)+2tan(𝛉/2)−1∣+C
Puttingt=tanθ2dt=12(1+tan2θ2)dθ=12(1+t2)dθcosθ=1t21+t2,sinθ=2t1+t2,dθ=2dt1+t2F=21t2(t2+2t1)(1+t2)dt==t+1t2+1dt+t+1t2+2t1dt=dt1+t212d(t2+1)t2+1+12d(t2+2t1)t2+2t1=arctant12ln(1+t2)+12lnt2+2t1θ212ln(tan2θ2+1)+12lntan2θ2+2tanθ21+C
Answered by mathmax by abdo last updated on 08/Jul/20
I =∫ ((cosθ)/(snθ−cosθ))dθ ⇒ I =∫  (dθ/(tanθ−1)) changement tanθ =x give  I =∫  (dx/((1+x^2 )(x−1))) let decompose F(x) =(1/((x−1)(x^2  +1))) ⇒  F(x) =(a/(x−1)) +((bx+c)/(x^2  +1))  wehave a =(1/2) ,  lim_(x→+∞)  xF(x) =0 =a+b ⇒b =−(1/2)  F(0) =−1 =−a +c ⇒c =a−1 =−(1/2) ⇒F(x)=(1/(2(x−1))) +((−(1/2)x−(1/2))/(x^2  +1)) ⇒  I = (1/2)∫ (dx/(x−1))−(1/2)∫ ((x+1)/(x^2  +1))dx =(1/2)ln∣x−1∣−(1/4)ln(x^2  +1)−(1/2) arctanx +c  =(1/2)ln∣tanθ −1∣ −(1/4)ln(1+tan^2 θ)−(θ/2) +c .
I=cosθsnθcosθdθI=dθtanθ1changementtanθ=xgiveI=dx(1+x2)(x1)letdecomposeF(x)=1(x1)(x2+1)F(x)=ax1+bx+cx2+1wehavea=12,limx+xF(x)=0=a+bb=12F(0)=1=a+cc=a1=12F(x)=12(x1)+12x12x2+1I=12dxx112x+1x2+1dx=12lnx114ln(x2+1)12arctanx+c=12lntanθ114ln(1+tan2θ)θ2+c.

Leave a Reply

Your email address will not be published. Required fields are marked *