Menu Close

cos-x-1-sin-x-2cos-x-cos-x-sin-x-in-5pi-7pi-2-




Question Number 81062 by john santu last updated on 09/Feb/20
cos x (√(1+sin x−2cos x)) = cos x−sin x  in [ −5π , −((7π)/2)]
cosx1+sinx2cosx=cosxsinxin[5π,7π2]
Commented by MJS last updated on 09/Feb/20
sorry no time today  (1) let x=2arctan t       ⇒ sin x =((2t)/(t^2 +1)) ∧ cos x =−((t^2 −1)/(t^2 +1))  (2) check for which values the (√(...)) ∈R  (3) solve for t       [squaring ⇒ not all solutions are useable!]  (4) t=tan (x/2) ⇔ x=2nπ+2arctan t       find the solution in the required interval
sorrynotimetoday(1)letx=2arctantsinx=2tt2+1cosx=t21t2+1(2)checkforwhichvaluestheR(3)solvefort[squaringnotallsolutionsareuseable!](4)t=tanx2x=2nπ+2arctantfindthesolutionintherequiredinterval
Commented by jagoll last updated on 09/Feb/20
hello mister. how are you?
hellomister.howareyou?
Commented by john santu last updated on 09/Feb/20
thank you sir
thankyousir
Commented by MJS last updated on 09/Feb/20
...this leads to a polynome of 6^(th)  degree:  t^6 −t^5 −5t^4 −2t^3 +t^2 +3t−1=0  which can be factorized...  (t^2 +t−1)(t^2 −(1+(√5))t+1)(t^2 −(1−(√5))t+1)=0  ...and solved
thisleadstoapolynomeof6thdegree:t6t55t42t3+t2+3t1=0whichcanbefactorized(t2+t1)(t2(1+5)t+1)(t2(15)t+1)=0andsolved
Commented by john santu last updated on 09/Feb/20
my way sir   (1)cos^2 x(1+sin x−2cos x)=cos^2 x−2sin xcos x+sin^2 x  (2)1+sin x−2cos x≥0  (3)cos x(cos x−sin x)>0  ⇒(1) (sin x−2cos x)(cos^2 x−sin x)=0  (i) sin x=2cos x ⇒tan x=2  (ii) cos^2 x−sin x=0  sin^2 x+sin x−1=0 ⇒sin x=((−1+(√5))/2)  x=sin^(−1) (((−1+(√5))/2))+2πn , n∈Z  x=π−sin^(−1) (((−1+(√5))/2))+2πn, n∈Z  (3)cos x(cos x−sin x)>0  cos x=0 ⇒x=(π/2)+πn, n∈Z  cos x=sin x ⇒x=(π/4)+πk ,k∈Z
mywaysir(1)cos2x(1+sinx2cosx)=cos2x2sinxcosx+sin2x(2)1+sinx2cosx0(3)cosx(cosxsinx)>0(1)(sinx2cosx)(cos2xsinx)=0(i)sinx=2cosxtanx=2(ii)cos2xsinx=0sin2x+sinx1=0sinx=1+52x=sin1(1+52)+2πn,nZx=πsin1(1+52)+2πn,nZ(3)cosx(cosxsinx)>0cosx=0x=π2+πn,nZcosx=sinxx=π4+πk,kZ

Leave a Reply

Your email address will not be published. Required fields are marked *