Question Number 63117 by mugan deni last updated on 29/Jun/19
$$\int\frac{\mathrm{cos}\:{x}}{\mathrm{2}+\mathrm{3sin}\:{x}+\mathrm{sin}\:^{\mathrm{2}} {x}}{dx} \\ $$
Commented by mathmax by abdo last updated on 30/Jun/19
$${let}\:{I}\:=\int\:\:\frac{{cosx}}{{sin}^{\mathrm{2}} {x}+\mathrm{3}{sinx}\:+\mathrm{2}}{dx}\:\:{changement}\:{sinx}\:={t}\:{give}\:{cosxdx}\:={dt}\:\Rightarrow \\ $$$${I}\:=\int\:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{3}{t}\:+\mathrm{2}}\:\:{let}\:{solve}\:{t}^{\mathrm{2}} \:+\mathrm{3}{t}+\mathrm{2}\:=\mathrm{0}\:\rightarrow\Delta=\mathrm{9}−\mathrm{8}=\mathrm{1}\:\Rightarrow \\ $$$${t}_{\mathrm{1}} =\frac{−\mathrm{3}+\mathrm{1}}{\mathrm{2}}\:=−\mathrm{1}\:\:{and}\:{t}_{\mathrm{2}} =\frac{−\mathrm{3}−\mathrm{1}}{\mathrm{2}}\:=−\mathrm{2}\:\Rightarrow{t}^{\mathrm{2}} \:+\mathrm{3}{t}\:+\mathrm{2}\:=\left({t}+\mathrm{1}\right)\left({t}+\mathrm{2}\right)\:\Rightarrow \\ $$$${I}\:=\int\:\:\frac{{dt}}{\left({t}+\mathrm{1}\right)\left({t}+\mathrm{2}\right)}\:=\:\int\:\:\:\left(\frac{\mathrm{1}}{{t}+\mathrm{1}}−\frac{\mathrm{1}}{{t}+\mathrm{2}}\right){dt}\:={ln}\mid{t}+\mathrm{1}\mid−{ln}\mid{t}+\mathrm{2}\mid\:+{c} \\ $$$$={ln}\mid\mathrm{1}+{sinx}\mid−{ln}\mid\mathrm{2}+{sinx}\mid\:+{c}\:. \\ $$
Answered by Hope last updated on 29/Jun/19
$${a}={sinx}\:{da}={cosxdx} \\ $$$$\int\frac{{da}}{{a}^{\mathrm{2}} +\mathrm{3}{a}+\mathrm{2}} \\ $$$$\int\frac{{da}}{\left({a}+\mathrm{1}\right)\left({a}+\mathrm{2}\right)} \\ $$$$\int\frac{\left({a}+\mathrm{2}\right)−\left({a}+\mathrm{1}\right)}{\left({a}+\mathrm{1}\right)\left({a}+\mathrm{2}\right)}{da} \\ $$$$\int\frac{{da}}{{a}+\mathrm{1}}−\int\frac{{da}}{{a}+\mathrm{2}} \\ $$$${ln}\left({a}+\mathrm{1}\right)−{ln}\left({a}+\mathrm{2}\right)+{c} \\ $$$${ln}\left(\frac{{a}+\mathrm{1}}{{a}+\mathrm{2}}\right)+{c} \\ $$$${ln}\left(\frac{\mathrm{1}+{sinx}}{\mathrm{2}+{sinx}}\right)+{c} \\ $$$$ \\ $$$$ \\ $$