Menu Close

cos-x-5-4cos-x-2-dx-




Question Number 87340 by john santu last updated on 04/Apr/20
∫ ((cos x)/((5+4cos x)^2 )) dx =
cosx(5+4cosx)2dx=
Commented by john santu last updated on 04/Apr/20
dear mr Mjs. whether methods   besides weierstrass substitution?
dearmrMjs.whethermethodsbesidesweierstrasssubstitution?
Commented by MJS last updated on 04/Apr/20
all other methods are super complicated
allothermethodsaresupercomplicated
Commented by mathmax by abdo last updated on 04/Apr/20
I =∫  ((cosx)/((5+4cosx)^2 ))dx ⇒I =(1/(25))∫  ((cosx)/((1+(4/5)cosx)^2 ))dx  let f(a) =∫    (dx/(1+acosx))  with 0<a<1 ⇒f^′ (a) =−∫  ((cosx)/((1+acosx)^2 ))dx ⇒  ∫  ((cosx)/((1+acosx)^2 ))dx =−f^′ (a) and I =−(1/(25))f^′ ((4/5)) let explicit f(a)  f(a) =_(tan((x/2))=t)    ∫   ((2dt)/((1+t^2 )(1+a((1−t^2 )/(1+t^2 )))))  =∫  ((2dt)/(1+t^2 +a−at^2 )) =∫  ((2dt)/((1−a)t^2  +1+a)) =(2/(1−a))∫  (dt/(t^2  +((1+a)/(1−a))))  =_(t=(√((1+a)/(1−a)))u)     (2/(1−a))×((1−a)/(1+a)) ∫   (1/(1+u^2 ))×(√((1+a)/(1−a)))du  =(2/( (√(1−a^2 )))) arctan((√((1−a)/(1+a)))t) +C  =(2/( (√(1−a^2 )))) arctan((√((1−a)/(1+a)))tan((x/2))) +C ⇒  f^′ (a) =(2(1−a^2 )^(−(1/2)) )^′  arctan((√((1−a)/(1+a)))tan((x/2)))  +(2/( (√(1−a^2 )))) {  ((((√((1−a)/(1+a)))tan((x/2))^′ )/(1+((1−a)/(1+a))tan^2 ((x/2))))}  =−(−2a)(1−a^2 )^(−(3/2))  arctan((√((1−a)/(1+a)))tan((x/2)))  +(2/( (√(1−a^2 ))))tan((x/2))×(1/(1+((1−a)/(1+a))tan^2 ((x/2))))×(((((1−a)/(1+a)))^′ )/(2(√((1−a)/(1+a)))))  =2a(1−a^2 )^(−(3/2))  arctan((√((1−a)/(1+a)))tan((x/2)))  +(2/( (√(1−a^2 ))))tan((x/2))×(1/(1+((1−a)/(1+a))tan^2 ((x/2))))×((−2)/((1+a)^2 ×2(√((1−a)/(1+a)))))  I =−(1/(25))f^′ ((4/5))
I=cosx(5+4cosx)2dxI=125cosx(1+45cosx)2dxletf(a)=dx1+acosxwith0<a<1f(a)=cosx(1+acosx)2dxcosx(1+acosx)2dx=f(a)andI=125f(45)letexplicitf(a)f(a)=tan(x2)=t2dt(1+t2)(1+a1t21+t2)=2dt1+t2+aat2=2dt(1a)t2+1+a=21adtt2+1+a1a=t=1+a1au21a×1a1+a11+u2×1+a1adu=21a2arctan(1a1+at)+C=21a2arctan(1a1+atan(x2))+Cf(a)=(2(1a2)12)arctan(1a1+atan(x2))+21a2{(1a1+atan(x2)1+1a1+atan2(x2)}=(2a)(1a2)32arctan(1a1+atan(x2))+21a2tan(x2)×11+1a1+atan2(x2)×(1a1+a)21a1+a=2a(1a2)32arctan(1a1+atan(x2))+21a2tan(x2)×11+1a1+atan2(x2)×2(1+a)2×21a1+aI=125f(45)
Answered by ajfour last updated on 04/Apr/20
let tan (x/2)=t   ⇒  (1/2)(sec^2 (x/2))dx=dt  ⇒  dx=((2dt)/(1+t^2 ))  ,  cos x=((1−t^2 )/(1+t^2 ))  I=∫(((((1−t^2 )/(1+t^2 )))(((2dt)/(1+t^2 ))))/((5+((4−4t^2 )/(1+t^2 )))^2 ))    I= 2∫((1−t^2 )/((9+t^2 )^2 ))dt  now   let   t=3tan θ  dt=3sec^2 θdθ  I=2∫((1−9tan^2 θ)/(81sec^4 θ))(3sec^2 θdθ)  say   tan θ=z  I=(2/(27))∫cos^2 θdθ−(1/3)∫sin^2 θdθ    ......
lettanx2=t12(sec2x2)dx=dtdx=2dt1+t2,cosx=1t21+t2I=(1t21+t2)(2dt1+t2)(5+44t21+t2)2I=21t2(9+t2)2dtnowlett=3tanθdt=3sec2θdθI=219tan2θ81sec4θ(3sec2θdθ)saytanθ=zI=227cos2θdθ13sin2θdθ
Commented by jagoll last updated on 04/Apr/20
weierstrass substitution
weierstrasssubstitution
Commented by ajfour last updated on 04/Apr/20
is this the name to the method?
isthisthenametothemethod?
Commented by jagoll last updated on 04/Apr/20
yes sir
yessir
Commented by john santu last updated on 04/Apr/20
yes this method weierstrass   substitution
yesthismethodweierstrasssubstitution
Commented by ajfour last updated on 04/Apr/20
alright, i couldn′t go along any  other line.
alright,icouldntgoalonganyotherline.
Answered by TANMAY PANACEA. last updated on 04/Apr/20
t=5+4cosx→cosx=((t−5)/4)  (1/4)∫((4cosx+5−5)/((5+4cosx)^2 ))dx  (1/4)∫(dx/(5+4cosx))−(5/4)∫(dx/((5+4cosx)^2 ))★     let I_1 =∫(dx/(5+4cosx))  and I_2 =∫(dx/((5+4cosx)^2 ))  so I=(I_1 /4)−((5I_2 )/4).......eqn  (1)    p=((sinx)/(5+4cosx))  (dp/dx)=(((5+4cosx)cosx−sinx(−4sinx))/((5+4cosx)^2 ))  (dp/dx)=((5cosx+4)/((5+4cosx)^2 ))=((((5(t−5))/4)+4)/t^2 )=((5t−9)/(4t^2 ))=(5/(4t))−(9/(4t^2 ))  ((sinx)/(5+4cosx))=(5/4)∫(dx/(5+cosx))−(9/4)∫(dx/((5+4cosx)^2 ))    now look  ((sinx)/(5+4cosx))=((5I_1 )/4)−((9I_2 )/4)....eqn(2)  [5I_1 −4(((sinx)/(5+cosx)))]×(1/9)=I_2     ■ look if we find the value of I_1 =∫(dx/(5+4cosx))  then from eqn(2) we get value of I_2   finaly we get I=(I_1 /4)−((5I_2 )/4)■  ∫(dx/(5+4cosx))=∫((sec^2 (x/2))/(5+5tan^2 (x/2)+4−4tan^2 (x/2)))dx=∫((sec^2 (x/2))/(tan^2 (x/2)+3^2 ))  =2∫((d(tan(x/2)))/(3^2 +tan^2 (x/2)))dx=2×(1/3)tan^(−1) (((tan(x/2))/3))+c_1   =  I_1 =(2/3)tan^(−1) (((tan(x/2))/3))  I_2 =(1/9)[5I_1 −((4sinx)/(5+4cosx))]  I_2 =(1/9)[((10)/3)tan^(−1) (((tan(x/2))/3))−((4sinx)/(5+4cosx))]^   finally  I=(I_1 /4)−((5I_2 )/4)=(2/(12))tan^(−1) (((tan(x/2))/3))−(5/4)×(1/9)[((10)/3)tan^(−1) (((tan(x/2))/3))−((4sinx)/(5+4cosx))]  I=((2/(12))−((50)/(108)))tan^(−1) (((tan(x/2))/3))+(5/(36))(((4sinx)/(5+4cosx)))+C
t=5+4cosxcosx=t54144cosx+55(5+4cosx)2dx14dx5+4cosx54dx(5+4cosx)2letI1=dx5+4cosxandI2=dx(5+4cosx)2soI=I145I24.eqn(1)p=sinx5+4cosxdpdx=(5+4cosx)cosxsinx(4sinx)(5+4cosx)2dpdx=5cosx+4(5+4cosx)2=5(t5)4+4t2=5t94t2=54t94t2sinx5+4cosx=54dx5+cosx94dx(5+4cosx)2nowlooksinx5+4cosx=5I149I24.eqn(2)[5I14(sinx5+cosx)]×19=I2◼lookifwefindthevalueofI1=dx5+4cosxthenfromeqn(2)wegetvalueofI2finalywegetI=I145I24◼dx5+4cosx=sec2x25+5tan2x2+44tan2x2dx=sec2x2tan2x2+32=2d(tanx2)32+tan2x2dx=2×13tan1(tanx23)+c1=I1=23tan1(tanx23)I2=19[5I14sinx5+4cosx]Missing \left or extra \rightfinallyI=I145I24=212tan1(tanx23)54×19[103tan1(tanx23)4sinx5+4cosx]I=(21250108)tan1(tanx23)+536(4sinx5+4cosx)+C
Commented by john santu last updated on 04/Apr/20
waw....amazing sir
waw.amazingsir
Commented by TANMAY PANACEA. last updated on 04/Apr/20
thank you sir
thankyousir
Answered by MJS last updated on 04/Apr/20
Weierstrass is the fastest  ∫((cos x)/((5+4cos x)^2 ))dx=       [t=tan (x/2) → dx=(2/(t^2 +1))dt]  =−2∫((t^2 −1)/((t^2 +9)^2 ))dt=  =20∫(dt/((t^2 +9)^2 ))−2∫(dt/(t^2 +9))=  =((10t)/(9(t^2 +9)))−(8/(27))arctan (t/3) =  =((5sin x)/(9(5+4cos x)))−(8/(27))arctan ((tan (x/2))/3) +C
Weierstrassisthefastestcosx(5+4cosx)2dx=[t=tanx2dx=2t2+1dt]=2t21(t2+9)2dt==20dt(t2+9)22dtt2+9==10t9(t2+9)827arctant3==5sinx9(5+4cosx)827arctantanx23+C
Commented by jagoll last updated on 04/Apr/20
great sir. i like this method
greatsir.ilikethismethod

Leave a Reply

Your email address will not be published. Required fields are marked *