Menu Close

cos-x-cos-x-cos-x-cos-x-sin-x-dx-




Question Number 144142 by bobhans last updated on 22/Jun/21
 ∫ ((√(cos x+(√(cos x+(√(cos x+(√(cos x+(√(...))))))))))/(sin x)) dx
$$\:\int\:\frac{\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{…}}}}}}{\mathrm{sin}\:\mathrm{x}}\:\mathrm{dx} \\ $$
Answered by liberty last updated on 22/Jun/21
(√(cos x+(√(cos x+(√(cos x+(√(...)))))))) = ℓ   (√(cos x+ℓ)) = ℓ ⇒ℓ^2 −ℓ−cos x =0  ⇒ℓ = ((1+(√(1+4cos x)))/2)  I=∫ ((1+(√(1+4cos x)))/(2sin x)) dx
$$\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{cos}\:\mathrm{x}+\sqrt{…}}}}\:=\:\ell\: \\ $$$$\sqrt{\mathrm{cos}\:\mathrm{x}+\ell}\:=\:\ell\:\Rightarrow\ell^{\mathrm{2}} −\ell−\mathrm{cos}\:\mathrm{x}\:=\mathrm{0} \\ $$$$\Rightarrow\ell\:=\:\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4cos}\:\mathrm{x}}}{\mathrm{2}} \\ $$$$\mathrm{I}=\int\:\frac{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{4cos}\:\mathrm{x}}}{\mathrm{2sin}\:\mathrm{x}}\:\mathrm{dx}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *