Menu Close

cos-x-dx-




Question Number 121466 by sdfg last updated on 08/Nov/20
∫(√(cos(x) dx))
$$\int\sqrt{{cos}\left({x}\right)\:{dx}} \\ $$
Commented by MJS_new last updated on 08/Nov/20
∫(√(cos x dx)) or ∫(√(cos x)) dx?
$$\int\sqrt{\mathrm{cos}\:{x}\:{dx}}\:\mathrm{or}\:\int\sqrt{\mathrm{cos}\:{x}}\:{dx}? \\ $$
Commented by sdfg last updated on 08/Nov/20
∫(√(cos x ))dx
$$\int\sqrt{\mathrm{cos}\:\mathrm{x}\:}\mathrm{dx} \\ $$
Answered by MJS_new last updated on 08/Nov/20
∫(√(cos x)) dx=       [t=(x/2) → dx=2dt]  =2∫(√(cos 2t)) dt=2∫(√(2cos^2  t −1)) dt=  =2∫(√(1−2sin^2  t)) dt=2E (t∣2) =  =2E ((x/2)∣2) +C
$$\int\sqrt{\mathrm{cos}\:{x}}\:{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{{x}}{\mathrm{2}}\:\rightarrow\:{dx}=\mathrm{2}{dt}\right] \\ $$$$=\mathrm{2}\int\sqrt{\mathrm{cos}\:\mathrm{2}{t}}\:{dt}=\mathrm{2}\int\sqrt{\mathrm{2cos}^{\mathrm{2}} \:{t}\:−\mathrm{1}}\:{dt}= \\ $$$$=\mathrm{2}\int\sqrt{\mathrm{1}−\mathrm{2sin}^{\mathrm{2}} \:{t}}\:{dt}=\mathrm{2E}\:\left({t}\mid\mathrm{2}\right)\:= \\ $$$$=\mathrm{2E}\:\left(\frac{{x}}{\mathrm{2}}\mid\mathrm{2}\right)\:+{C} \\ $$
Commented by MJS_new last updated on 08/Nov/20
∫(√(sin x)) dx=∫(√(cos (x−(π/2)))) dx  ⇒  ∫(√(sin x)) dx=2E ((x/2)−(π/4)∣2) +C
$$\int\sqrt{\mathrm{sin}\:{x}}\:{dx}=\int\sqrt{\mathrm{cos}\:\left({x}−\frac{\pi}{\mathrm{2}}\right)}\:{dx} \\ $$$$\Rightarrow \\ $$$$\int\sqrt{\mathrm{sin}\:{x}}\:{dx}=\mathrm{2E}\:\left(\frac{{x}}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}\mid\mathrm{2}\right)\:+{C} \\ $$
Commented by MJS_new last updated on 08/Nov/20
(Elliptic Integral)
$$\left(\mathrm{Elliptic}\:\mathrm{Integral}\right) \\ $$
Commented by peter frank last updated on 08/Nov/20
∫(√(sin x)) dx=?
$$\int\sqrt{\mathrm{sin}\:\mathrm{x}}\:{dx}=? \\ $$
Commented by peter frank last updated on 08/Nov/20
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *