Menu Close

cos-x-dx-




Question Number 121466 by sdfg last updated on 08/Nov/20
∫(√(cos(x) dx))
cos(x)dx
Commented by MJS_new last updated on 08/Nov/20
∫(√(cos x dx)) or ∫(√(cos x)) dx?
cosxdxorcosxdx?
Commented by sdfg last updated on 08/Nov/20
∫(√(cos x ))dx
cosxdx
Answered by MJS_new last updated on 08/Nov/20
∫(√(cos x)) dx=       [t=(x/2) → dx=2dt]  =2∫(√(cos 2t)) dt=2∫(√(2cos^2  t −1)) dt=  =2∫(√(1−2sin^2  t)) dt=2E (t∣2) =  =2E ((x/2)∣2) +C
cosxdx=[t=x2dx=2dt]=2cos2tdt=22cos2t1dt==212sin2tdt=2E(t2)==2E(x22)+C
Commented by MJS_new last updated on 08/Nov/20
∫(√(sin x)) dx=∫(√(cos (x−(π/2)))) dx  ⇒  ∫(√(sin x)) dx=2E ((x/2)−(π/4)∣2) +C
sinxdx=cos(xπ2)dxsinxdx=2E(x2π42)+C
Commented by MJS_new last updated on 08/Nov/20
(Elliptic Integral)
(EllipticIntegral)
Commented by peter frank last updated on 08/Nov/20
∫(√(sin x)) dx=?
sinxdx=?
Commented by peter frank last updated on 08/Nov/20
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *