Menu Close

cos5x-cos4x-1-2cos3x-dx-




Question Number 163114 by abdullahhhhh last updated on 03/Jan/22
∫(((cos5x+cos4x)/(1+2cos3x))) dx
$$\int\left(\frac{\boldsymbol{\mathrm{cos}}\mathrm{5}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{cos}}\mathrm{4}\boldsymbol{\mathrm{x}}}{\mathrm{1}+\mathrm{2}\boldsymbol{\mathrm{cos}}\mathrm{3}\boldsymbol{\mathrm{x}}}\right)\:\boldsymbol{\mathrm{dx}} \\ $$$$\:\: \\ $$
Answered by blackmamba last updated on 04/Jan/22
 ∫ ((((e^(5x) +e^(−5x) )/2) +((e^(4x) +e^(−4x) )/2))/(1+2(((e^(3x) +e^(−3x) )/2)))) dx   = ∫ ((e^(5x) +e^(−5x) +e^(4x) +e^(−4x) )/(2+2e^(3x) +2e^(−3x) )) dx   let e^x  = u ⇒dx=(du/u)  = ∫ ((u^5 +u^(−5) +u^4 +u^(−4) )/(2+2u^3 +2u^(−3) )) (du/u)  = ∫ ((u^4 +u^(−6) +u^3 +u^(−5) )/(2+2u^3 +2u^(−3) )) du  = ∫ ((u^(10) +1+u^9 +u)/(2u^6 +2u^9 +2u^3 )) du
$$\:\int\:\frac{\frac{{e}^{\mathrm{5}{x}} +{e}^{−\mathrm{5}{x}} }{\mathrm{2}}\:+\frac{{e}^{\mathrm{4}{x}} +{e}^{−\mathrm{4}{x}} }{\mathrm{2}}}{\mathrm{1}+\mathrm{2}\left(\frac{{e}^{\mathrm{3}{x}} +{e}^{−\mathrm{3}{x}} }{\mathrm{2}}\right)}\:{dx} \\ $$$$\:=\:\int\:\frac{{e}^{\mathrm{5}{x}} +{e}^{−\mathrm{5}{x}} +{e}^{\mathrm{4}{x}} +{e}^{−\mathrm{4}{x}} }{\mathrm{2}+\mathrm{2}{e}^{\mathrm{3}{x}} +\mathrm{2}{e}^{−\mathrm{3}{x}} }\:{dx} \\ $$$$\:{let}\:{e}^{{x}} \:=\:{u}\:\Rightarrow{dx}=\frac{{du}}{{u}} \\ $$$$=\:\int\:\frac{{u}^{\mathrm{5}} +{u}^{−\mathrm{5}} +{u}^{\mathrm{4}} +{u}^{−\mathrm{4}} }{\mathrm{2}+\mathrm{2}{u}^{\mathrm{3}} +\mathrm{2}{u}^{−\mathrm{3}} }\:\frac{{du}}{{u}} \\ $$$$=\:\int\:\frac{{u}^{\mathrm{4}} +{u}^{−\mathrm{6}} +{u}^{\mathrm{3}} +{u}^{−\mathrm{5}} }{\mathrm{2}+\mathrm{2}{u}^{\mathrm{3}} +\mathrm{2}{u}^{−\mathrm{3}} }\:{du} \\ $$$$=\:\int\:\frac{{u}^{\mathrm{10}} +\mathrm{1}+{u}^{\mathrm{9}} +{u}}{\mathrm{2}{u}^{\mathrm{6}} +\mathrm{2}{u}^{\mathrm{9}} +\mathrm{2}{u}^{\mathrm{3}} }\:{du} \\ $$
Commented by mkam last updated on 04/Jan/22
false
$${false} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *