Menu Close

cosx-sin3x-find-x-with-solution-pllllllz-




Question Number 60536 by hovea cw last updated on 21/May/19
cosx=sin3x  find x with solution    pllllllz
cosx=sin3xfindxwithsolutionpllllllz
Answered by mr W last updated on 21/May/19
cos x=sin ((π/2)−x)=sin 3x  ⇒3x=(π/2)−x+2nπ  ⇒x=((nπ)/2)+(π/8), nεZ  or  ⇒3x=(2n+1)π−((π/2)−x)  ⇒x=nπ+(π/4), nεZ
cosx=sin(π2x)=sin3x3x=π2x+2nπx=nπ2+π8,nϵZor3x=(2n+1)π(π2x)x=nπ+π4,nϵZ
Commented by hovea cw last updated on 21/May/19
ok sir thanks
oksirthanks
Answered by MJS last updated on 21/May/19
cos x =sin 3x  x=arctan t  (1/( (√(t^2 +1))))=((t(3−t^2 ))/( (√((t^2 +1)^3 ))))  t^2 +1=t(3−t^2 )  t^3 +t^2 −3t+1=0  (t−1)(t^2 +2t−1)=0  t_1 =−1−(√2); t_2 =−1+(√2); t_3 =1  x_1 =arctan (−1−(√2))=−((3π)/8)±πn  x_2 =arctan (−1+(√2))=(π/8)±πn  x_3 =arctan 1 =(π/4)±πn  [n∈N]
cosx=sin3xx=arctant1t2+1=t(3t2)(t2+1)3t2+1=t(3t2)t3+t23t+1=0(t1)(t2+2t1)=0t1=12;t2=1+2;t3=1x1=arctan(12)=3π8±πnx2=arctan(1+2)=π8±πnx3=arctan1=π4±πn[nN]
Commented by hovea cw last updated on 21/May/19
how did u get arctant=x    skr
howdidugetarctant=xskr
Commented by MJS last updated on 21/May/19
I substituted it to get a solveable equation  in t
Isubstitutedittogetasolveableequationint
Commented by MJS last updated on 22/May/19
sin 3x =−sin x (1−4cos^2  x)  sin arctan t =(t/( (√(t^2 +1))))  cos arctan t =(1/( (√(t^2 +1))))  sin 3x =−(t/( (√(t^2 +1))))(1−(4/(t^2 +1)))=((t(3−t^2 ))/( (√((t^2 +1)^3 ))))
sin3x=sinx(14cos2x)sinarctant=tt2+1cosarctant=1t2+1sin3x=tt2+1(14t2+1)=t(3t2)(t2+1)3
Answered by malwaan last updated on 22/May/19
cosx=cos((π/2)−3x)  x=±((π/2)−3x)+2nπ  ∴ x=(π/8)+((nπ)/2) ; n∈Z  or x=(π/4)−nπ=(π/4)+nπ ; n∈Z
cosx=cos(π23x)x=±(π23x)+2nπx=π8+nπ2;nZorx=π4nπ=π4+nπ;nZ

Leave a Reply

Your email address will not be published. Required fields are marked *