Menu Close

cosxcos-pi-6-sin-pi-6-sinx-pi-4-




Question Number 167986 by DAVONG last updated on 31/Mar/22
cosxcos(π/6)−sin(π/6)sinx=(π/4)
cosxcosπ6sinπ6sinx=π4
Answered by Rasheed.Sindhi last updated on 31/Mar/22
cosxcos(π/6)−sin(π/6)sinx=(π/4)  ⇒cos(x+(π/6))=(π/4)        x+(π/6)=cos^(−1) ((π/4))       x=cos^(−1) ((π/4))−(π/6)     •  x=cos^(−1) ((π/4))+2nπ−(π/6)      •x=cos^(−1) (2π−(π/4))+2nπ−(π/6)           =cos^(−1) (((7π)/4))+2nπ−(π/6)
cosxcosπ6sinπ6sinx=π4cos(x+π6)=π4x+π6=cos1(π4)x=cos1(π4)π6x=cos1(π4)+2nππ6x=cos1(2ππ4)+2nππ6=cos1(7π4)+2nππ6

Leave a Reply

Your email address will not be published. Required fields are marked *