Menu Close

cot-4-xdx-




Question Number 20666 by NECx last updated on 31/Aug/17
∫cot^4 xdx
$$\int\mathrm{cot}\:^{\mathrm{4}} {xdx} \\ $$
Answered by Joel577 last updated on 31/Aug/17
cosec^2  x − cot^2  x = 1  I = ∫ cot^2  x(cosec^2  x − 1) dx     = ∫ (cot^2  x cosec^2  x) dx − ∫ cot^2  x dx  Let u = cot x  →  du = −cosec^2  x dx  I = ∫ u^2  . cosec^2  x . (du/(−cosec^2  x)) − ∫ (cosec^2  x − 1) dx     = −(1/3)u^3  + cot x + x + C     = −(1/3)cot^3  x + cot x + x + C
$$\mathrm{cosec}^{\mathrm{2}} \:{x}\:−\:\mathrm{cot}^{\mathrm{2}} \:{x}\:=\:\mathrm{1} \\ $$$${I}\:=\:\int\:\mathrm{cot}^{\mathrm{2}} \:{x}\left(\mathrm{cosec}^{\mathrm{2}} \:{x}\:−\:\mathrm{1}\right)\:{dx} \\ $$$$\:\:\:=\:\int\:\left(\mathrm{cot}^{\mathrm{2}} \:{x}\:\mathrm{cosec}^{\mathrm{2}} \:{x}\right)\:{dx}\:−\:\int\:\mathrm{cot}^{\mathrm{2}} \:{x}\:{dx} \\ $$$$\mathrm{Let}\:{u}\:=\:\mathrm{cot}\:{x}\:\:\rightarrow\:\:{du}\:=\:−\mathrm{cosec}^{\mathrm{2}} \:{x}\:{dx} \\ $$$${I}\:=\:\int\:{u}^{\mathrm{2}} \:.\:\mathrm{cosec}^{\mathrm{2}} \:{x}\:.\:\frac{{du}}{−\mathrm{cosec}^{\mathrm{2}} \:{x}}\:−\:\int\:\left(\mathrm{cosec}^{\mathrm{2}} \:{x}\:−\:\mathrm{1}\right)\:{dx} \\ $$$$\:\:\:=\:−\frac{\mathrm{1}}{\mathrm{3}}{u}^{\mathrm{3}} \:+\:\mathrm{cot}\:{x}\:+\:{x}\:+\:{C} \\ $$$$\:\:\:=\:−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{cot}^{\mathrm{3}} \:{x}\:+\:\mathrm{cot}\:{x}\:+\:{x}\:+\:{C} \\ $$
Commented by NECx last updated on 31/Aug/17
thank you sir.
$${thank}\:{you}\:{sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *