Menu Close

could-there-be-an-analytical-or-numerical-meghod-for-solving-this-non-linear-simultaneous-equation-x-y-5-x-x-y-y-31-please-help-if-possible-




Question Number 26274 by NECx last updated on 23/Dec/17
could there be an analytical or  numerical meghod for solving  this non-linear simultaneous  equation  x+y=5  x^x +y^y =31    please help if possible
$${could}\:{there}\:{be}\:{an}\:{analytical}\:{or} \\ $$$${numerical}\:{meghod}\:{for}\:{solving} \\ $$$${this}\:{non}-{linear}\:{simultaneous} \\ $$$${equation} \\ $$$${x}+{y}=\mathrm{5} \\ $$$${x}^{{x}} +{y}^{{y}} =\mathrm{31} \\ $$$$ \\ $$$${please}\:{help}\:{if}\:{possible} \\ $$
Commented by mrW1 last updated on 23/Dec/17
by try & error:  x=3, y=2 or  x=2, y=3
$${by}\:{try}\:\&\:{error}: \\ $$$${x}=\mathrm{3},\:{y}=\mathrm{2}\:{or} \\ $$$${x}=\mathrm{2},\:{y}=\mathrm{3} \\ $$
Commented by prakash jain last updated on 24/Dec/17
f(x)=x^x +(5−x)^(5−x) −31  Graphing technique can be used  to find approx value.
$${f}\left({x}\right)={x}^{{x}} +\left(\mathrm{5}−{x}\right)^{\mathrm{5}−{x}} −\mathrm{31} \\ $$$$\mathrm{Graphing}\:\mathrm{technique}\:\mathrm{can}\:\mathrm{be}\:\mathrm{used} \\ $$$$\mathrm{to}\:\mathrm{find}\:\mathrm{approx}\:\mathrm{value}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *