Question Number 37279 by abdo.msup.com last updated on 11/Jun/18
![cslculate ∫∫_([0,1]^2 ) (x−y)e^(−x−y) dxdy .](https://www.tinkutara.com/question/Q37279.png)
Commented by prof Abdo imad last updated on 18/Jun/18
![let use the changement (u,v)→(x,y)=(x−y,x+y)=(ϕ_1 (u,v),ϕ_2 (u,v)) we have 0≤x≤1 and 0≤y≤1 ⇒ −1≤−y≤0 ⇒ −1≤x−y≤1 and 0≤x+y≤2 ⇒ −1≤u≤1 and 0≤v≤2 and M_j = ((((∂ϕ_1 /∂u) (∂ϕ_1 /∂v))),(((∂ϕ_2 /∂u) (∂ϕ_2 /∂v))) ) = ((),() ) we have x−y=u and x+y=v ⇒2x=u+v and 2y = −u +v ⇒ x= (1/2) u +(1/2)v and y =−(1/2)u +(1/2)v ⇒ M_j = ((((1/2) (1/2))),((−(1/2) (1/2))) ) and det(M_j )= (1/2) ∫∫_([0,1]^2 ) (x−y)e^(−(x+y)) dxdy =∫∫_(−1≤u≤1 and 0≤v≤2) u e^(−v) (1/2)du dv =(1/2) ∫_(−1) ^1 u du.∫_0 ^2 e^(−v) dv =(1/2)[ (u^2 /2)]_(−1) ^1 .[ −e^(−v) ]_0 ^2 =0](https://www.tinkutara.com/question/Q37829.png)
Answered by ajfour last updated on 11/Jun/18
![A=∫_0 ^( 1) (1/e^y )[∫_0 ^( 1) xe^(−x) dx−y∫_0 ^( 1) e^(−x) dx]dy =∫_9 ^( 1) (1/e^y )[−(1+x)e^(−x) +ye^(−x) ]∣_0 ^1 dy =∫_0 ^( 1) (1/e^y )[((y/e)−(2/e))−(y−1)]dy =∫_0 ^( 1) [((1/e)−1)y+(1−(2/e))]e^(−y) dy ={−[((1/e)−1)y+(1−(2/e))]e^(−y) −((1/e)−1)e^(−y) }∣_0 ^1 =−(1/e)[(1/e)−1+1−(2/e)]+1−(2/e) −(1/e)((1/e)−1)+(1/e)−1 = 0 .](https://www.tinkutara.com/question/Q37313.png)
Commented by prof Abdo imad last updated on 18/Jun/18

Commented by ajfour last updated on 18/Jun/18
