Menu Close

cslculate-0-1-2-x-y-e-x-y-dxdy-




Question Number 37279 by abdo.msup.com last updated on 11/Jun/18
cslculate ∫∫_([0,1]^2 )    (x−y)e^(−x−y) dxdy .
cslculate[0,1]2(xy)exydxdy.
Commented by prof Abdo imad last updated on 18/Jun/18
let use the changement  (u,v)→(x,y)=(x−y,x+y)=(ϕ_1 (u,v),ϕ_2 (u,v))  we have 0≤x≤1 and 0≤y≤1 ⇒  −1≤−y≤0 ⇒ −1≤x−y≤1 and  0≤x+y≤2 ⇒ −1≤u≤1 and 0≤v≤2 and  M_j  =  ((((∂ϕ_1 /∂u)             (∂ϕ_1 /∂v))),(((∂ϕ_2 /∂u)                (∂ϕ_2 /∂v))) )  = ((),() )  we have x−y=u and x+y=v ⇒2x=u+v  and 2y = −u +v ⇒ x= (1/2) u +(1/2)v and  y =−(1/2)u +(1/2)v  ⇒  M_j  = ((((1/2)            (1/2))),((−(1/2)          (1/2))) )     and det(M_j )= (1/2)  ∫∫_([0,1]^2 )    (x−y)e^(−(x+y)) dxdy  =∫∫_(−1≤u≤1 and  0≤v≤2)  u e^(−v)  (1/2)du dv  =(1/2) ∫_(−1) ^1  u du.∫_0 ^2  e^(−v)  dv  =(1/2)[ (u^2 /2)]_(−1) ^1 .[ −e^(−v) ]_0 ^2   =0
letusethechangement(u,v)(x,y)=(xy,x+y)=(φ1(u,v),φ2(u,v))wehave0x1and0y11y01xy1and0x+y21u1and0v2andMj=(φ1uφ1vφ2uφ2v)=()wehavexy=uandx+y=v2x=u+vand2y=u+vx=12u+12vandy=12u+12vMj=(12121212)anddet(Mj)=12[0,1]2(xy)e(x+y)dxdy=1u1and0v2uev12dudv=1211udu.02evdv=12[u22]11.[ev]02=0
Answered by ajfour last updated on 11/Jun/18
A=∫_0 ^(  1) (1/e^y )[∫_0 ^(  1) xe^(−x) dx−y∫_0 ^(  1) e^(−x) dx]dy  =∫_9 ^(  1) (1/e^y )[−(1+x)e^(−x) +ye^(−x) ]∣_0 ^1 dy  =∫_0 ^(  1) (1/e^y )[((y/e)−(2/e))−(y−1)]dy  =∫_0 ^(  1) [((1/e)−1)y+(1−(2/e))]e^(−y) dy  ={−[((1/e)−1)y+(1−(2/e))]e^(−y)             −((1/e)−1)e^(−y) }∣_0 ^1   =−(1/e)[(1/e)−1+1−(2/e)]+1−(2/e)             −(1/e)((1/e)−1)+(1/e)−1  = 0 .
A=011ey[01xexdxy01exdx]dy=911ey[(1+x)ex+yex]01dy=011ey[(ye2e)(y1)]dy=01[(1e1)y+(12e)]eydy={[(1e1)y+(12e)]ey(1e1)ey}01=1e[1e1+12e]+12e1e(1e1)+1e1=0.
Commented by prof Abdo imad last updated on 18/Jun/18
your answer is correct sir Ajfour thanks.
youransweriscorrectsirAjfourthanks.
Commented by ajfour last updated on 18/Jun/18
thanks for confirming my answer  Sir; makes me happy.
thanksforconfirmingmyanswerSir;makesmehappy.

Leave a Reply

Your email address will not be published. Required fields are marked *