Menu Close

cslculate-k-1-n-k-2-n-1-k-




Question Number 35036 by abdo mathsup 649 cc last updated on 14/May/18
cslculate Σ_(k=1) ^n k^2 (n+1−k)
$${cslculate}\:\sum_{{k}=\mathrm{1}} ^{{n}} {k}^{\mathrm{2}} \left({n}+\mathrm{1}−{k}\right) \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 14/May/18
T_k =(n+1)k^2 −k^3   T_1 =(n+1)1^2 −1^3   T_2 =(n+1)2^2 −2^3   T_3 =(n+1)3^2 −3^3   .......................  ........................  T_n =(n+1)n^2 −n^3   so T_1 +T_2 +...+T_n   =(n+1)((n(n+1)(2n+1))/6)−{((n(n+1))/2)}^2
$${T}_{{k}} =\left({n}+\mathrm{1}\right){k}^{\mathrm{2}} −{k}^{\mathrm{3}} \\ $$$${T}_{\mathrm{1}} =\left({n}+\mathrm{1}\right)\mathrm{1}^{\mathrm{2}} −\mathrm{1}^{\mathrm{3}} \\ $$$${T}_{\mathrm{2}} =\left({n}+\mathrm{1}\right)\mathrm{2}^{\mathrm{2}} −\mathrm{2}^{\mathrm{3}} \\ $$$${T}_{\mathrm{3}} =\left({n}+\mathrm{1}\right)\mathrm{3}^{\mathrm{2}} −\mathrm{3}^{\mathrm{3}} \\ $$$$………………….. \\ $$$$…………………… \\ $$$${T}_{{n}} =\left({n}+\mathrm{1}\right){n}^{\mathrm{2}} −{n}^{\mathrm{3}} \\ $$$${so}\:{T}_{\mathrm{1}} +{T}_{\mathrm{2}} +…+{T}_{{n}} \\ $$$$=\left({n}+\mathrm{1}\right)\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}}−\left\{\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right\}^{\mathrm{2}} \\ $$
Commented by math khazana by abdo last updated on 15/May/18
correct answer thanks...
$${correct}\:{answer}\:{thanks}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *