Menu Close

cslculate-n-2-ln-1-1-n-n-




Question Number 34688 by math khazana by abdo last updated on 09/May/18
cslculate Σ_(n=2) ^∞  ln(1+(((−1)^n )/n))
cslculaten=2ln(1+(1)nn)
Commented by abdo mathsup 649 cc last updated on 14/May/18
let put S_n  = Σ_(k=2) ^n  ln(1+(((−1)^k )/k))  S_n = ln{ Π_(k=2) ^n  (1+(((−1)^k )/k))}=ln(w_n )  but  w_n = Π_(k=2) ^n  (1+(((−1)^k )/k)) = Π_(p=1) ^([(n/2)])  ( 1+ (1/(2p))) Π_(p=1) ^([((n−1)/2)]) (1−(1/(2p+1)))  w_(2n)  =Π_(p=1) ^n    ((2p+1)/(2p)) Π_(p=1) ^(n−1)    ((2p)/(2p+1))  = ((2n−1)/(2n−2)) Π_(p=1) ^(n−1)  (1) = ((2n−1)/(2n−2)) →1(n→+∞)  lim_(n→+∞)   S_(2n)   = 0  w_(2n+1)  = Π_(p=1) ^n  (1−(1/(2p+1)))Π_(p=1) ^n  (1 +(1/(2p)))  = Π_(p=1) ^n    ((2p)/(2p+1)) Π_(p=1) ^n  ((2p+1)/(2p)) =1 ⇒lim S_(2n+1) =0 so  S_n  →0(n→+∞)
letputSn=k=2nln(1+(1)kk)Sn=ln{k=2n(1+(1)kk)}=ln(wn)butwn=k=2n(1+(1)kk)=p=1[n2](1+12p)p=1[n12](112p+1)w2n=p=1n2p+12pp=1n12p2p+1=2n12n2p=1n1(1)=2n12n21(n+)limn+S2n=0w2n+1=p=1n(112p+1)p=1n(1+12p)=p=1n2p2p+1p=1n2p+12p=1limS2n+1=0soSn0(n+)

Leave a Reply

Your email address will not be published. Required fields are marked *