Menu Close

cslculate-n-2-ln-1-1-n-n-




Question Number 34688 by math khazana by abdo last updated on 09/May/18
cslculate Σ_(n=2) ^∞  ln(1+(((−1)^n )/n))
$${cslculate}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:{ln}\left(\mathrm{1}+\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\right) \\ $$
Commented by abdo mathsup 649 cc last updated on 14/May/18
let put S_n  = Σ_(k=2) ^n  ln(1+(((−1)^k )/k))  S_n = ln{ Π_(k=2) ^n  (1+(((−1)^k )/k))}=ln(w_n )  but  w_n = Π_(k=2) ^n  (1+(((−1)^k )/k)) = Π_(p=1) ^([(n/2)])  ( 1+ (1/(2p))) Π_(p=1) ^([((n−1)/2)]) (1−(1/(2p+1)))  w_(2n)  =Π_(p=1) ^n    ((2p+1)/(2p)) Π_(p=1) ^(n−1)    ((2p)/(2p+1))  = ((2n−1)/(2n−2)) Π_(p=1) ^(n−1)  (1) = ((2n−1)/(2n−2)) →1(n→+∞)  lim_(n→+∞)   S_(2n)   = 0  w_(2n+1)  = Π_(p=1) ^n  (1−(1/(2p+1)))Π_(p=1) ^n  (1 +(1/(2p)))  = Π_(p=1) ^n    ((2p)/(2p+1)) Π_(p=1) ^n  ((2p+1)/(2p)) =1 ⇒lim S_(2n+1) =0 so  S_n  →0(n→+∞)
$${let}\:{put}\:{S}_{{n}} \:=\:\sum_{{k}=\mathrm{2}} ^{{n}} \:{ln}\left(\mathrm{1}+\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\right) \\ $$$${S}_{{n}} =\:{ln}\left\{\:\prod_{{k}=\mathrm{2}} ^{{n}} \:\left(\mathrm{1}+\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\right)\right\}={ln}\left({w}_{{n}} \right)\:\:{but} \\ $$$${w}_{{n}} =\:\prod_{{k}=\mathrm{2}} ^{{n}} \:\left(\mathrm{1}+\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\right)\:=\:\prod_{{p}=\mathrm{1}} ^{\left[\frac{{n}}{\mathrm{2}}\right]} \:\left(\:\mathrm{1}+\:\frac{\mathrm{1}}{\mathrm{2}{p}}\right)\:\prod_{{p}=\mathrm{1}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{2}}\right]} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{p}+\mathrm{1}}\right) \\ $$$${w}_{\mathrm{2}{n}} \:=\prod_{{p}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{2}{p}+\mathrm{1}}{\mathrm{2}{p}}\:\prod_{{p}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\:\:\frac{\mathrm{2}{p}}{\mathrm{2}{p}+\mathrm{1}} \\ $$$$=\:\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}{n}−\mathrm{2}}\:\prod_{{p}=\mathrm{1}} ^{{n}−\mathrm{1}} \:\left(\mathrm{1}\right)\:=\:\frac{\mathrm{2}{n}−\mathrm{1}}{\mathrm{2}{n}−\mathrm{2}}\:\rightarrow\mathrm{1}\left({n}\rightarrow+\infty\right) \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:{S}_{\mathrm{2}{n}} \:\:=\:\mathrm{0} \\ $$$${w}_{\mathrm{2}{n}+\mathrm{1}} \:=\:\prod_{{p}=\mathrm{1}} ^{{n}} \:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{p}+\mathrm{1}}\right)\prod_{{p}=\mathrm{1}} ^{{n}} \:\left(\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{2}{p}}\right) \\ $$$$=\:\prod_{{p}=\mathrm{1}} ^{{n}} \:\:\:\frac{\mathrm{2}{p}}{\mathrm{2}{p}+\mathrm{1}}\:\prod_{{p}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{2}{p}+\mathrm{1}}{\mathrm{2}{p}}\:=\mathrm{1}\:\Rightarrow{lim}\:{S}_{\mathrm{2}{n}+\mathrm{1}} =\mathrm{0}\:{so} \\ $$$${S}_{{n}} \:\rightarrow\mathrm{0}\left({n}\rightarrow+\infty\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *