Menu Close

d-1-2-tan-2cot-2-d-2tan-2-1-2-cot-




Question Number 37432 by MJS last updated on 13/Jun/18
∫(dα/((1/2)tan α +2cot (α/2)))=?  ∫(dβ/(2tan (β/2) +(1/2)cot β))=?
dα12tanα+2cotα2=?dβ2tanβ2+12cotβ=?
Answered by ajfour last updated on 13/Jun/18
∫((2sin αcos αdα)/(sin^2 α+4cos^2 α))=∫((sin 2αdα)/(1+(3/2)(1+cos 2α)))  =(1/3)∫ ((3sin 2α d(2α))/(5+3cos 2α))  =−(1/3)ln (5+3cos 2α)+c .
2sinαcosαdαsin2α+4cos2α=sin2αdα1+32(1+cos2α)=133sin2αd(2α)5+3cos2α=13ln(5+3cos2α)+c.
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jun/18
2)t=tan(β/2)   dt=sec^2 (β/2)×(1/2)×dβ  ∫((2dt)/(1+t^2 )) ×(1/(2t+(1/2)×((1−t^2 )/(2t))))  ∫((2dt)/(1+t^2 ))×((4t)/(8t^2 +1−t^2 ))  8∫((tdt)/(1+t^2 ))×(1/(1+7t^2 ))    k=t^2      dk=2tdt  4∫(dk/(1+k))×(1/(1+7k))  (4/6)∫(((7+7k)−(1+7k))/((1+k)(1+7k)))dk  (2/3)∫((7dk)/(1+7k))−(2/3)∫(dk/(1+k))  (2/3)ln∣((1+7k)/(1+k))∣  (2/3)ln∣((1+7t^2 )/(1+t^2 ))∣  (2/3)ln∣((1+7tan^2 β)/(1+tan^2 β))∣
2)t=tanβ2dt=sec2β2×12×dβ2dt1+t2×12t+12×1t22t2dt1+t2×4t8t2+1t28tdt1+t2×11+7t2k=t2dk=2tdt4dk1+k×11+7k46(7+7k)(1+7k)(1+k)(1+7k)dk237dk1+7k23dk1+k23ln1+7k1+k23ln1+7t21+t223ln1+7tan2β1+tan2β

Leave a Reply

Your email address will not be published. Required fields are marked *