Question Number 82390 by jagoll last updated on 21/Feb/20
$$\left({D}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} {y}\:=\:{t}^{\mathrm{3}} \\ $$$${find}\:{solution} \\ $$
Answered by TANMAY PANACEA last updated on 21/Feb/20
$${y}={e}^{{mt}} \:\:{so}\:\:\:\:\:\frac{{dy}}{{dt}}={me}^{{mt}} \:{and}\:\:\:\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }={m}^{\mathrm{2}} {e}^{{mt}} \\ $$$$\left({m}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${m}=\mathrm{1},\mathrm{1},−\mathrm{1},−\mathrm{1} \\ $$$${complementary}\:{function} \\ $$$${y}={Ae}^{{t}} +{Bte}^{{t}} +{Ce}^{−{t}} +{Fte}^{−{t}} \\ $$$$ \\ $$$${particular}\:{intregal} \\ $$$${now}\:{formula} \\ $$$$\left(\mathrm{1}+{x}\right)^{−\mathrm{2}} =\mathrm{1}−\mathrm{2}{x}+\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{x}^{\mathrm{3}} +… \\ $$$${y}=\frac{{t}^{\mathrm{3}} }{\left({D}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }=\frac{{t}^{\mathrm{3}} }{\left(\mathrm{1}−{D}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${y}=\left(\mathrm{1}−{D}^{\mathrm{2}} \right)^{−\mathrm{2}} {t}^{\mathrm{3}} \\ $$$$=\left(\mathrm{1}+\mathrm{2}{D}^{\mathrm{2}} +\mathrm{3}{D}^{\mathrm{4}} +{others}\:{terms}\:{ignored}\right){t}^{\mathrm{3}} \\ $$$$=\left({t}^{\mathrm{3}} +\mathrm{2}×\mathrm{3}×\mathrm{2}{t}\right)\:\:\:\left[\frac{{dt}^{\mathrm{3}} }{{dt}}=\mathrm{3}{t}^{\mathrm{2}} \rightarrow\frac{{d}\left(\mathrm{3}{t}^{\mathrm{2}} \right)}{{dt}}=\mathrm{6}{t}\right] \\ $$$$={t}^{\mathrm{3}} +\mathrm{12}{t} \\ $$$${complete}\:{solution} \\ $$$${y}={Ae}^{{t}} +{Bte}^{{t}} +{Ce}^{−{t}} +{Fte}^{−{t}} +{t}^{\mathrm{3}} +\mathrm{12}{t} \\ $$
Commented by jagoll last updated on 21/Feb/20
$${thank}\:{you}\:{sir} \\ $$
Commented by TANMAY PANACEA last updated on 21/Feb/20
$${most}\:{welcome} \\ $$