D-2-2D-1-y-x-ln-x- Tinku Tara June 4, 2023 Differential Equation 0 Comments FacebookTweetPin Question Number 103201 by bobhans last updated on 13/Jul/20 (D2−2D+1)y=xln(x) Commented by bobhans last updated on 14/Jul/20 thankyouboth Answered by bramlex last updated on 14/Jul/20 homogenoussolutionη2−2η+1=0;(η−1)2=0yh=C1ex+C2xexnowweusevariationofparametersy=u.ex+v.xexdifferentiatingyieldsy′=u′ex+uex+v′xex+v(x+1)exsettingu′ex+v′xex=0y″=u′ex+uex+v′(x+1)ex+v(x+2)exsubstitutingy,y′,y″intooriginaldifferentialequationgivesus(u′ex+uex+v′(x+1)ex+v(x+2)ex)−2(uex+v(x+1)ex)+(uex+vxex)=xln(x)whichsimplifiestou′+(x+1)v′=xe−xln(x)nowwehavetwoequationsforu′andv′⇒u′ex+v′xex=0andu′+(x+1)v′=xe−xln(x)solvingthissystemofequationu′=−x2e−xln(x)andv′=xe−xln(x).integratinggivesusu=−∫x1t2e−tln(t)dtandv=∫x1te−tln(t)dthenceweconcludethatageneralsolutionisgivenbyy=C1ex+C2xex−ex∫x1t2e−tln(t)dt+xex∫x1te−tln(t)dt Answered by abdomsup last updated on 13/Jul/20 (he)→y″−2y′+y=0⇒r2−2r+1=0⇒(r−1)2=0⇒r=1⇒yh=(ax+b)ex=axex+bex=au1+bu2W(u1,u2)=|xexex(x+1)exex|=xe2x−(x+1)e2x=−e2x≠0w1=|0exxlnxex|=−xexlnxw2=|xexo(x+1)exxlnx|==x2exlnxv1=∫w1wdx=∫xexlnxe2xdx=∫xe−xlnxdxv2=∫w2wdx=−∫x2exlnxe2xdx=−∫x2e−xlnxdx⇒yp=u1v1+u2v2=xex∫xte−tlntdt−ex∫xt2e−tlntdty=yh+yp Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-1-sinx-dx-Next Next post: Question-168737 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.