Menu Close

D-2-4D-4-y-xe-2x-




Question Number 99989 by bemath last updated on 24/Jun/20
(D^2 −4D+4)y = xe^(2x)
$$\left(\mathrm{D}^{\mathrm{2}} −\mathrm{4D}+\mathrm{4}\right)\mathrm{y}\:=\:{xe}^{\mathrm{2}{x}} \\ $$
Answered by bobhans last updated on 24/Jun/20
homogenous solution  β^2 −4β+4=0 , which has root β=2  hence y= e^(2x)  is a homogenous solution  Now we aplly reduction of order with this  solution . set y = e^(2x)  z , substituting this  into the original diff eq yields   e^(2x) (z′′+4z′+4z)−4e^(2x) (z′+2z)+4e^(2x)  z = xe^(2x)   which simplifies to z′′ = x  integrating this twice in succession yields  z = (1/6)x^3 +C_1 x+C_2   generall solution y = (C_1 x+C_2 )e^(2x)  + (1/6)x^3 e^(2x)
$$\mathrm{homogenous}\:\mathrm{solution} \\ $$$$\beta^{\mathrm{2}} −\mathrm{4}\beta+\mathrm{4}=\mathrm{0}\:,\:\mathrm{which}\:\mathrm{has}\:\mathrm{root}\:\beta=\mathrm{2} \\ $$$$\mathrm{hence}\:\mathrm{y}=\:\mathrm{e}^{\mathrm{2x}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{homogenous}\:\mathrm{solution} \\ $$$$\mathrm{Now}\:\mathrm{we}\:\mathrm{aplly}\:\mathrm{reduction}\:\mathrm{of}\:\mathrm{order}\:\mathrm{with}\:\mathrm{this} \\ $$$$\mathrm{solution}\:.\:\mathrm{set}\:\mathrm{y}\:=\:\mathrm{e}^{\mathrm{2x}} \:\mathrm{z}\:,\:\mathrm{substituting}\:\mathrm{this} \\ $$$$\mathrm{into}\:\mathrm{the}\:\mathrm{original}\:\mathrm{diff}\:\mathrm{eq}\:\mathrm{yields}\: \\ $$$$\mathrm{e}^{\mathrm{2x}} \left(\mathrm{z}''+\mathrm{4z}'+\mathrm{4z}\right)−\mathrm{4e}^{\mathrm{2x}} \left(\mathrm{z}'+\mathrm{2z}\right)+\mathrm{4e}^{\mathrm{2x}} \:\mathrm{z}\:=\:{xe}^{\mathrm{2}{x}} \\ $$$$\mathrm{which}\:\mathrm{simplifies}\:\mathrm{to}\:\mathrm{z}''\:=\:{x} \\ $$$${integrating}\:{this}\:{twice}\:{in}\:{succession}\:{yields} \\ $$$$\mathrm{z}\:=\:\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} +{C}_{\mathrm{1}} {x}+{C}_{\mathrm{2}} \\ $$$$\mathrm{generall}\:\mathrm{solution}\:\mathrm{y}\:=\:\left(\mathrm{C}_{\mathrm{1}} {x}+{C}_{\mathrm{2}} \right)\mathrm{e}^{\mathrm{2x}} \:+\:\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} {e}^{\mathrm{2}{x}} \\ $$
Commented by bemath last updated on 24/Jun/20
great...thank much
$$\mathrm{great}…\mathrm{thank}\:\mathrm{much} \\ $$
Answered by mathmax by abdo last updated on 24/Jun/20
y^(′′) −4y^′  +4y =xe^(2x)   (he)→r^2 −4r +4 =0 ⇒(r−2)^2  =0⇒r =2 ⇒y_h =(ax+b)e^(2x)   =axe^(2x)  +be^(2x)  =au_1  +bu_2   W(u_1  ,u_2 ) = determinant (((xe^(2x)              e^(2x) )),(((2x+1)e^(2x)   2e^(2x) )))=2x e^(4x) −(2x+1)e^(4x)  =−e^(4x)   W_1 = determinant (((0          e^(2x) )),((xe^(2x)      2e^(2x) )))=−xe^(4x)   W_2 = determinant (((xe^(2x)                         0)),(((2x+1)e^(2x)      xe^(2x) )))=x^2  e^(4x)   v_1 =∫ (w_1 /w)dx =∫  ((−xe^(4x) )/(−e^(4x) ))dx =∫ xdx =(x^2 /2)  v_2 =∫ (w_2 /w)dx =∫  ((x^2  e^(4x) )/(−e^(4x) ))dx =−∫ x^(2 ) dx =−(x^3 /3)  y_p =u_1 v_1  +u_2 v_2 =xe^(2x) ((x^2 /2))+e^(2x) (−(x^3 /3)) =((x^3 /2)−(x^3 /3))e^(2x)  =(x^3 /6) e^(2x)  ⇒  the general solution is y =y_h  +y_p =(ax+b)e^(2x)  +(x^3 /6)e^(2x)
$$\mathrm{y}^{''} −\mathrm{4y}^{'} \:+\mathrm{4y}\:=\mathrm{xe}^{\mathrm{2x}} \\ $$$$\left(\mathrm{he}\right)\rightarrow\mathrm{r}^{\mathrm{2}} −\mathrm{4r}\:+\mathrm{4}\:=\mathrm{0}\:\Rightarrow\left(\mathrm{r}−\mathrm{2}\right)^{\mathrm{2}} \:=\mathrm{0}\Rightarrow\mathrm{r}\:=\mathrm{2}\:\Rightarrow\mathrm{y}_{\mathrm{h}} =\left(\mathrm{ax}+\mathrm{b}\right)\mathrm{e}^{\mathrm{2x}} \\ $$$$=\mathrm{axe}^{\mathrm{2x}} \:+\mathrm{be}^{\mathrm{2x}} \:=\mathrm{au}_{\mathrm{1}} \:+\mathrm{bu}_{\mathrm{2}} \\ $$$$\mathrm{W}\left(\mathrm{u}_{\mathrm{1}} \:,\mathrm{u}_{\mathrm{2}} \right)\:=\begin{vmatrix}{\mathrm{xe}^{\mathrm{2x}} \:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{e}^{\mathrm{2x}} }\\{\left(\mathrm{2x}+\mathrm{1}\right)\mathrm{e}^{\mathrm{2x}} \:\:\mathrm{2e}^{\mathrm{2x}} }\end{vmatrix}=\mathrm{2x}\:\mathrm{e}^{\mathrm{4x}} −\left(\mathrm{2x}+\mathrm{1}\right)\mathrm{e}^{\mathrm{4x}} \:=−\mathrm{e}^{\mathrm{4x}} \\ $$$$\mathrm{W}_{\mathrm{1}} =\begin{vmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\mathrm{e}^{\mathrm{2x}} }\\{\mathrm{xe}^{\mathrm{2x}} \:\:\:\:\:\mathrm{2e}^{\mathrm{2x}} }\end{vmatrix}=−\mathrm{xe}^{\mathrm{4x}} \\ $$$$\mathrm{W}_{\mathrm{2}} =\begin{vmatrix}{\mathrm{xe}^{\mathrm{2x}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{\left(\mathrm{2x}+\mathrm{1}\right)\mathrm{e}^{\mathrm{2x}} \:\:\:\:\:\mathrm{xe}^{\mathrm{2x}} }\end{vmatrix}=\mathrm{x}^{\mathrm{2}} \:\mathrm{e}^{\mathrm{4x}} \\ $$$$\mathrm{v}_{\mathrm{1}} =\int\:\frac{\mathrm{w}_{\mathrm{1}} }{\mathrm{w}}\mathrm{dx}\:=\int\:\:\frac{−\mathrm{xe}^{\mathrm{4x}} }{−\mathrm{e}^{\mathrm{4x}} }\mathrm{dx}\:=\int\:\mathrm{xdx}\:=\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\mathrm{v}_{\mathrm{2}} =\int\:\frac{\mathrm{w}_{\mathrm{2}} }{\mathrm{w}}\mathrm{dx}\:=\int\:\:\frac{\mathrm{x}^{\mathrm{2}} \:\mathrm{e}^{\mathrm{4x}} }{−\mathrm{e}^{\mathrm{4x}} }\mathrm{dx}\:=−\int\:\mathrm{x}^{\mathrm{2}\:} \mathrm{dx}\:=−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\mathrm{y}_{\mathrm{p}} =\mathrm{u}_{\mathrm{1}} \mathrm{v}_{\mathrm{1}} \:+\mathrm{u}_{\mathrm{2}} \mathrm{v}_{\mathrm{2}} =\mathrm{xe}^{\mathrm{2x}} \left(\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\right)+\mathrm{e}^{\mathrm{2x}} \left(−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}\right)\:=\left(\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{2}}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{3}}\right)\mathrm{e}^{\mathrm{2x}} \:=\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\:\mathrm{e}^{\mathrm{2x}} \:\Rightarrow \\ $$$$\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{is}\:\mathrm{y}\:=\mathrm{y}_{\mathrm{h}} \:+\mathrm{y}_{\mathrm{p}} =\left(\mathrm{ax}+\mathrm{b}\right)\mathrm{e}^{\mathrm{2x}} \:+\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\mathrm{e}^{\mathrm{2x}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *