Menu Close

d-2-a-2-y-tan-ax-by-the-method-of-variation-of-parameters-




Question Number 47035 by 23kpratik last updated on 04/Nov/18
(d^2 +a^2 )y=tan ax by the method of variation of parameters
(d2+a2)y=tanaxbythemethodofvariationofparameters
Commented by tanmay.chaudhury50@gmail.com last updated on 04/Nov/18
pls clarify  d means (d/dx) is it...
plsclarifydmeansddxisit
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Nov/18
y=(1/(D^2 +a^2 ))tanax  =(1/(D^2 +a^2 ))×((2isinax)/(i×2cosax))  =(1/(D^2 +a^2 ))×((e^(iax) −e^(−iax) )/(i×(e^(iax) +e^(−iax) )))  e^(iax) =cosax+isinax  e^(−iax) =cosax−isinax  y=(1/((D+ia)(D−ia)))×(1/i)×((e^(i2ax) −1)/(e^(i2ax) +1))  =wait...
y=1D2+a2tanax=1D2+a2×2isinaxi×2cosax=1D2+a2×eiaxeiaxi×(eiax+eiax)eiax=cosax+isinaxeiax=cosaxisinaxy=1(D+ia)(Dia)×1i×ei2ax1ei2ax+1=wait

Leave a Reply

Your email address will not be published. Required fields are marked *