Menu Close

d-2-x-dt-2-a-b-1-l-x-2-l-2-x-Find-x-t-if-x-0-x-0-x-0-0-




Question Number 40920 by ajfour last updated on 29/Jul/18
(d^( 2) x/dt^2 )=a−b(1−(l/( (√(x^2 +l^2 )))))x   Find x(t) if x(0)=x_0  , x′(0)=0 .
d2xdt2=ab(1lx2+l2)xFindx(t)ifx(0)=x0,x(0)=0.
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Jul/18
v(dv/dx)=a−b(1−(l/( (√(x^2 +l^2 )))))x  vdv=(a−bx+((blx)/( (√(x^2 +l^2 ))))  ) dx  vdv=(a−bx)dx+((bl)/2)((d(x^2 +l^2 ))/( (√(x^2 +l^2 ))))  intregating  (v^2 /2)=ax−b(x^2 /2)+((bl)/2)(((√(x^2 +l^2 )) )/(1/2))+c  v=(dx/dt)=x′   (v^2 /2)=ax−((bx^2 )/2)+bl(√(x^2 +l^2 ))  +c  boundary condition  at t=0  (dx/dt)=v=0   x=x_0   0=ax_0 −((bx_0 ^2 )/2)+bl(√(x_0 ^2 +l^2 )) +c  (v^2 /2)=a(x−x_0 )−(b^2 /2)(x^2 −x_0 ^2 )+bl((√(x^2 +l^2 ))  −(√(x_0 ^2 +l^2 ))    contd...
vdvdx=ab(1lx2+l2)xvdv=(abx+blxx2+l2)dxvdv=(abx)dx+bl2d(x2+l2)x2+l2intregatingv22=axbx22+bl2x2+l212+cv=dxdt=xv22=axbx22+blx2+l2+cboundaryconditionatt=0dxdt=v=0x=x00=ax0bx022+blx02+l2+cv22=a(xx0)b22(x2x02)+bl(x2+l2x02+l2contd
Commented by ajfour last updated on 29/Jul/18
thanks sir for as far ..
thankssirforasfar..
Commented by tanmay.chaudhury50@gmail.com last updated on 30/Jul/18
(√(2{(((−b)/2)x^2 +ax+(b^2 /2)x_0 ^(2 ) −ax_0 −bl(√(x_0 ^2 +l^2 )) +bl(√(x^2 +l^2 ))   ))  the whole expression =(dx/dt)  (dx/dt)=(√(2(Ax^2 +Bx+C+D(√(x^2 +l^2 )) ))   form  x=∫(√(2(Ax^2 +Bx+C+D(√(x^2 +l^2 )) ))  dt
2{(b2x2+ax+b22x02ax0blx02+l2+blx2+l2thewholeexpression=dxdtdxdt=2(Ax2+Bx+C+Dx2+l2formx=2(Ax2+Bx+C+Dx2+l2dt

Leave a Reply

Your email address will not be published. Required fields are marked *