Menu Close

d-2-y-dx-2-log-y-0-




Question Number 115298 by Dwaipayan Shikari last updated on 24/Sep/20
(d^2 y/dx^2 )+log(y)=0
d2ydx2+log(y)=0
Commented by mohammad17 last updated on 25/Sep/20
y^(′′) +lny=0⇒y^(′′) =−lny    ∫d(y^′ )=−∫lnydy    y^′ =−ylny+y+C_1     ∫d(y)=∫(C_1 +y−ylny)dy    y=C_1 y+(1/2)y^2 −(1/2)y^2 lny+(1/4)y^2 +C_2     y=(3/4)y^2 −(1/2)y^2 lny+C_1 y+C_2     y=y^2 (((3−2lny)/4))+C_1 y+C_2     ⟨m.t⟩
y+lny=0y=lnyd(y)=lnydyy=ylny+y+C1d(y)=(C1+yylny)dyy=C1y+12y212y2lny+14y2+C2y=34y212y2lny+C1y+C2y=y2(32lny4)+C1y+C2m.t
Commented by Olaf last updated on 26/Sep/20
sorry mister.  ∫d(y′) = −∫lnydx ....!  and not −∫lnydy  And as you can see,  if you derivate your final result  to verify the initial equation  unafornately it′s wrong.
sorrymister.d(y)=lnydx.!andnotlnydyAndasyoucansee,ifyouderivateyourfinalresulttoverifytheinitialequationunafornatelyitswrong.
Answered by Olaf last updated on 24/Sep/20
y′′+lny = 0  y′′y′+y′lny = 0  ∫y′′y′dx+∫y′lnydx = 0  (1/2)y′^2 +ylny−∫y((y′)/y) = C_1   (1/2)y′^2 +ylny−y = C_1   y′^2  = 2y(1−lny)+ C_2   ((y′)/( (√(2y(1−lny)+C_2 )))) = 1  ∫((y′)/( (√(2y(1−lny)+C_2 ))))dx = x+C_3
y+lny=0yy+ylny=0yydx+ylnydx=012y2+ylnyyyy=C112y2+ylnyy=C1y2=2y(1lny)+C2y2y(1lny)+C2=1y2y(1lny)+C2dx=x+C3
Commented by Dwaipayan Shikari last updated on 25/Sep/20
Is there any definite solution?
Isthereanydefinitesolution?
Commented by Olaf last updated on 26/Sep/20
no sir.  only approximate solutions
nosir.onlyapproximatesolutions

Leave a Reply

Your email address will not be published. Required fields are marked *