Question Number 119235 by bemath last updated on 23/Oct/20
$$\:\left({D}^{\mathrm{3}} +{D}^{\mathrm{2}} −\mathrm{4}{D}−\mathrm{4}\right){y}\:=\:{e}^{\mathrm{4}{x}} \\ $$
Answered by benjo_mathlover last updated on 23/Oct/20
$$\left({D}+{I}\right)\left({D}−\mathrm{2}{I}\right)\left({D}+\mathrm{2}{I}\right)\left({y}\right)\:=\:{e}^{\mathrm{4}{x}} \\ $$$${let}\:\left({D}−\mathrm{2}{I}\right)\left({D}+\mathrm{2}{I}\right)\left({y}\right)\:=\:{z} \\ $$$$\Rightarrow\left({D}+{I}\right)\left({z}\right)\:=\:{e}^{\mathrm{4}{x}} \\ $$$$\Rightarrow\:{z}'\:+{z}\:=\:{e}^{\mathrm{4}{x}} \:;\:{e}^{{x}} \left({z}'+{z}\right)\:=\:{e}^{\mathrm{5}{x}} \\ $$$$\Rightarrow\left({e}^{{x}} .{z}\right)'\:=\:{e}^{\mathrm{5}{x}} \:;\:{e}^{{x}} .{z}\:=\:\frac{\mathrm{1}}{\mathrm{5}}{e}^{\mathrm{5}{x}} +{A} \\ $$$$\Rightarrow{z}\:=\:\frac{\mathrm{1}}{\mathrm{5}}{e}^{\mathrm{4}{x}} +{Ae}^{−{x}} \\ $$$$\Leftrightarrow\:\left({D}−\mathrm{2}{I}\right)\left({D}+\mathrm{2}{I}\right)\left({y}\right)=\frac{\mathrm{1}}{\mathrm{5}}{e}^{\mathrm{4}{x}} +{Ae}^{−{x}} \\ $$$${let}\:\left({D}+\mathrm{2}{I}\right)\left({y}\right)\:=\:{q}\: \\ $$$$\Rightarrow\left({D}−\mathrm{2}{I}\right)\left({q}\right)\:=\:\frac{\mathrm{1}}{\mathrm{5}}{e}^{\mathrm{4}{x}} +{Ae}^{−{x}} \\ $$$$\Rightarrow{q}'−\mathrm{2}{q}\:=\:\frac{\mathrm{1}}{\mathrm{5}}{e}^{\mathrm{4}{x}} +{Ae}^{−{x}} \\ $$$$\Rightarrow{e}^{−\mathrm{2}{x}} \left({q}'−\mathrm{2}{q}\right)\:=\:\frac{\mathrm{1}}{\mathrm{5}}{e}^{\mathrm{2}{x}} +{Ae}^{−\mathrm{3}{x}} \\ $$$$\Rightarrow\left({e}^{−\mathrm{2}{x}} .{q}\right)'\:=\:\frac{\mathrm{1}}{\mathrm{5}}{e}^{\mathrm{2}{x}} +{Ae}^{−\mathrm{3}{x}} \\ $$$$\Rightarrow\:{e}^{−\mathrm{2}{x}} .{q}\:=\:\int\:\left(\frac{\mathrm{1}}{\mathrm{5}}{e}^{\mathrm{2}{x}} +{Ae}^{−\mathrm{3}{x}} \:\right){dx} \\ $$$$\Rightarrow{q}\:=\:\frac{\mathrm{1}}{\mathrm{10}}{e}^{\mathrm{4}{x}} −\frac{\mathrm{1}}{\mathrm{3}}{Ae}^{−{x}} +{Be}^{\mathrm{2}{x}} \\ $$$$\Rightarrow\left({D}+\mathrm{2}{I}\right)\left({y}\right)\:=\:\frac{\mathrm{1}}{\mathrm{10}}{e}^{\mathrm{4}{x}} −\frac{\mathrm{1}}{\mathrm{3}}{Ae}^{−{x}} +{Be}^{\mathrm{2}{x}} \\ $$$$\Rightarrow{e}^{\mathrm{2}{x}} \left({y}'+\mathrm{2}{y}\right)\:=\:\frac{\mathrm{1}}{\mathrm{10}}{e}^{\mathrm{6}{x}} −\frac{\mathrm{1}}{\mathrm{3}}{Ae}^{{x}} +{Be}^{\mathrm{4}{x}} \\ $$$$\Rightarrow\left({e}^{\mathrm{2}{x}} .{y}\right)'\:=\:\frac{\mathrm{1}}{\mathrm{10}}{e}^{\mathrm{6}{x}} −\frac{\mathrm{1}}{\mathrm{3}}{Ae}^{{x}} +{Be}^{\mathrm{4}{x}} \\ $$$$\Rightarrow{e}^{\mathrm{2}{x}} .{y}\:=\:\int\:\left(\frac{\mathrm{1}}{\mathrm{10}}{e}^{\mathrm{6}{x}} −\frac{\mathrm{1}}{\mathrm{3}}{Ae}^{{x}} +{Be}^{\mathrm{4}{x}} \right)\:{dx} \\ $$$$\Rightarrow{y}\:=\:\frac{\mathrm{1}}{\mathrm{60}}{e}^{\mathrm{4}{x}} −\frac{\mathrm{1}}{\mathrm{3}}{Ae}^{−{x}} +\frac{\mathrm{1}}{\mathrm{4}}{Be}^{\mathrm{2}{x}} +\:{Ce}^{−\mathrm{2}{x}} \: \\ $$$$\left[\:−\frac{\mathrm{1}}{\mathrm{3}}{A}=\lambda_{\mathrm{1}} \:,\:\frac{\mathrm{1}}{\mathrm{4}}{B}=\lambda_{\mathrm{2}} \:,\:{C}\:=\:\lambda_{\mathrm{3}} \:\right]\: \\ $$$$\because\:{y}\:=\:\frac{\mathrm{1}}{\mathrm{60}}{e}^{\mathrm{4}{x}} +\lambda_{\mathrm{1}} {e}^{−{x}} +\lambda_{\mathrm{2}} {e}^{\mathrm{2}{x}} +\lambda_{\mathrm{3}} {e}^{−\mathrm{2}{x}} \\ $$
Commented by bemath last updated on 23/Oct/20
$${nice}… \\ $$