Menu Close

D-3-D-2-4D-4-y-e-4x-




Question Number 119235 by bemath last updated on 23/Oct/20
 (D^3 +D^2 −4D−4)y = e^(4x)
(D3+D24D4)y=e4x
Answered by benjo_mathlover last updated on 23/Oct/20
(D+I)(D−2I)(D+2I)(y) = e^(4x)   let (D−2I)(D+2I)(y) = z  ⇒(D+I)(z) = e^(4x)   ⇒ z′ +z = e^(4x)  ; e^x (z′+z) = e^(5x)   ⇒(e^x .z)′ = e^(5x)  ; e^x .z = (1/5)e^(5x) +A  ⇒z = (1/5)e^(4x) +Ae^(−x)   ⇔ (D−2I)(D+2I)(y)=(1/5)e^(4x) +Ae^(−x)   let (D+2I)(y) = q   ⇒(D−2I)(q) = (1/5)e^(4x) +Ae^(−x)   ⇒q′−2q = (1/5)e^(4x) +Ae^(−x)   ⇒e^(−2x) (q′−2q) = (1/5)e^(2x) +Ae^(−3x)   ⇒(e^(−2x) .q)′ = (1/5)e^(2x) +Ae^(−3x)   ⇒ e^(−2x) .q = ∫ ((1/5)e^(2x) +Ae^(−3x)  )dx  ⇒q = (1/(10))e^(4x) −(1/3)Ae^(−x) +Be^(2x)   ⇒(D+2I)(y) = (1/(10))e^(4x) −(1/3)Ae^(−x) +Be^(2x)   ⇒e^(2x) (y′+2y) = (1/(10))e^(6x) −(1/3)Ae^x +Be^(4x)   ⇒(e^(2x) .y)′ = (1/(10))e^(6x) −(1/3)Ae^x +Be^(4x)   ⇒e^(2x) .y = ∫ ((1/(10))e^(6x) −(1/3)Ae^x +Be^(4x) ) dx  ⇒y = (1/(60))e^(4x) −(1/3)Ae^(−x) +(1/4)Be^(2x) + Ce^(−2x)    [ −(1/3)A=λ_1  , (1/4)B=λ_2  , C = λ_3  ]   ∵ y = (1/(60))e^(4x) +λ_1 e^(−x) +λ_2 e^(2x) +λ_3 e^(−2x)
(D+I)(D2I)(D+2I)(y)=e4xlet(D2I)(D+2I)(y)=z(D+I)(z)=e4xz+z=e4x;ex(z+z)=e5x(ex.z)=e5x;ex.z=15e5x+Az=15e4x+Aex(D2I)(D+2I)(y)=15e4x+Aexlet(D+2I)(y)=q(D2I)(q)=15e4x+Aexq2q=15e4x+Aexe2x(q2q)=15e2x+Ae3x(e2x.q)=15e2x+Ae3xe2x.q=(15e2x+Ae3x)dxq=110e4x13Aex+Be2x(D+2I)(y)=110e4x13Aex+Be2xe2x(y+2y)=110e6x13Aex+Be4x(e2x.y)=110e6x13Aex+Be4xe2x.y=(110e6x13Aex+Be4x)dxy=160e4x13Aex+14Be2x+Ce2x[13A=λ1,14B=λ2,C=λ3]y=160e4x+λ1ex+λ2e2x+λ3e2x
Commented by bemath last updated on 23/Oct/20
nice...
nice

Leave a Reply

Your email address will not be published. Required fields are marked *