Question Number 82247 by jagoll last updated on 19/Feb/20
$$\left({D}^{\mathrm{4}} +\mathrm{2}{D}^{\mathrm{2}} +\mathrm{1}\right){y}\:={x}^{\mathrm{2}} \:\mathrm{cos}\:{x}\: \\ $$
Commented by john santu last updated on 20/Feb/20
$${characteristic}\:{equation}\: \\ $$$$\lambda^{\mathrm{4}} +\mathrm{2}\lambda^{\mathrm{2}} +\mathrm{1}\:=\:\mathrm{0}\: \\ $$$$\left(\lambda^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \:=\:\mathrm{0}\:\Rightarrow\left(\lambda^{\mathrm{2}} −{i}\right)^{\mathrm{2}\:} \left(\lambda^{\mathrm{2}} +{i}\right)^{\mathrm{2}} \:=\mathrm{0} \\ $$$$\lambda^{\mathrm{2}} \:=\:{i}\:\Rightarrow\:\lambda_{\mathrm{1},\mathrm{2}\:} \:=\:\pm\:\sqrt{\:{i}}\: \\ $$$$\lambda^{\mathrm{2}} \:=\:−{i}\:\Rightarrow\:\lambda_{\mathrm{3},\mathrm{4}} \:=\:\pm\:\sqrt{−{i}\:}\: \\ $$$${y}_{{h}} \:=\:{Ae}\:^{\sqrt{\:{i}}} \:+\:{Be}^{−\sqrt{{i}\:}} +{Ce}^{−\sqrt{−{i}\:}} +{De}^{\sqrt{\:−{i}\:}} \\ $$
Answered by TANMAY PANACEA last updated on 20/Feb/20
$${y}=\frac{{x}^{\mathrm{2}} {cosx}}{\left({D}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${y}_{{real}} +{y}_{{imaginary}} =\frac{{x}^{\mathrm{2}} {e}^{{ix}} }{\left({D}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{{e}^{{ix}} }{\left[\left({D}+{i}\right)^{\mathrm{2}} +\mathrm{1}\right]^{\mathrm{2}} }×{x}^{\mathrm{2}} \\ $$$$={e}^{{ix}} ×\frac{\mathrm{1}}{\left({D}^{\mathrm{2}} +\mathrm{2}{iD}\right)^{\mathrm{2}} }×{x}^{\mathrm{2}} \\ $$$$={e}^{{ix}} ×\frac{\mathrm{1}}{{D}^{\mathrm{2}} }×\frac{\mathrm{1}}{\left({D}+\mathrm{2}{i}\right)^{\mathrm{2}} }×{x}^{\mathrm{2}} \\ $$$$={e}^{{ix}} ×\frac{\mathrm{1}}{−\mathrm{4}\left(\mathrm{1}+\frac{{D}}{\mathrm{2}{i}}\right)^{\mathrm{2}} }×\frac{{x}^{\mathrm{4}} }{\mathrm{12}}\:\:\:\left[\frac{\mathrm{1}}{{D}^{\mathrm{2}} }×{x}^{\mathrm{2}} =\frac{\mathrm{1}}{{D}}×\frac{{x}^{\mathrm{3}} }{\mathrm{3}}=\frac{{x}^{\mathrm{4}} }{\mathrm{12}}\right] \\ $$$${now}\:{using} \\ $$$$\left(\mathrm{1}−{a}\right)^{−\mathrm{2}} =\mathrm{1}+\mathrm{2}{a}+\mathrm{3}{a}^{\mathrm{2}} +\mathrm{4}{a}^{\mathrm{3}} +\mathrm{5}{a}^{\mathrm{4}} +\mathrm{6}{a}^{\mathrm{5}} +…+\left({r}+\mathrm{1}\right){a}^{{r}} \\ $$$${put}\:{a}=−\frac{{D}}{\mathrm{2}{i}} \\ $$$$=\frac{\left({cosx}+{isinx}\right)}{−\mathrm{48}}×\left(\mathrm{1}−\mathrm{2}.\frac{{D}}{\mathrm{2}{i}}+\mathrm{3}×\frac{{D}^{\mathrm{2}} }{−\mathrm{4}}+\mathrm{4}×\frac{{D}^{\mathrm{3}} }{\mathrm{8}{i}}+\mathrm{5}×\frac{{D}^{\mathrm{4}} }{\mathrm{16}}\:{others}\:{terms}\:{ignored}\right){x}^{\mathrm{4}} \\ $$$$=\frac{\left({cosx}+{isinx}\right)}{−\mathrm{48}}\left({x}^{\mathrm{4}} −\frac{\mathrm{4}{x}^{\mathrm{3}} }{{i}}−\frac{\mathrm{3}}{\mathrm{4}}×\mathrm{12}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}{i}}×\mathrm{24}{x}+\frac{\mathrm{5}}{\mathrm{16}}×\mathrm{24}\right) \\ $$$$=\frac{{cosx}+{isinx}}{−\mathrm{48}}\left({x}^{\mathrm{4}} −\mathrm{9}{x}^{\mathrm{2}} +\frac{\mathrm{15}}{\mathrm{2}}+{i}×\mathrm{4}{x}^{\mathrm{3}} −{i}×\mathrm{12}{x}\right) \\ $$$${required}\:{answer}\:{is}\:{real}\:{part} \\ $$$$=\frac{{cosx}}{−\mathrm{48}}\left({x}^{\mathrm{4}} −\mathrm{9}{x}^{\mathrm{2}} +\frac{\mathrm{15}}{\mathrm{2}}\right)+\frac{{sinx}}{−\mathrm{48}}×\left(−\mathrm{1}\right)\left(\mathrm{4}{x}^{\mathrm{3}} −\mathrm{12}{x}\right) \\ $$$${pls}\:{check}\:{mistakd}\:{if}\:{any} \\ $$
Commented by jagoll last updated on 20/Feb/20
$${thank}\:{sir}\: \\ $$
Commented by TANMAY PANACEA last updated on 20/Feb/20
$${most}\:{welcome} \\ $$