Menu Close

d-d-d-dx-sinx-sinx-




Question Number 103894 by Study last updated on 18/Jul/20
(d/(d((d/dx)sinx)))∙sinx=?
dd(ddxsinx)sinx=?
Answered by 1549442205 last updated on 18/Jul/20
Denote I=(d/(d(d/dx)sinx))sinx=(d/(dcosx))sinx.  Putting  cos x=t.Then  we have I=(d/dt)(√(1−t^2 ))=((−t)/( (√(1−t^2 ))))=((−cosx)/(sinx))  =−cot x
DenoteI=ddddxsinxsinx=ddcosxsinx.Puttingcosx=t.ThenwehaveI=ddt1t2=t1t2=cosxsinx=cotx
Answered by MAB last updated on 18/Jul/20
  (d/(d((d/dx)sinx)))∙sinx=(d/(dcos(x)))sin(x)  =((dsin(x))/dx)∙(dx/(dcos(x)))  =cos(x)∙(−(1/(sin(x))))  =−cot(x)
dd(ddxsinx)sinx=ddcos(x)sin(x)=dsin(x)dxdxdcos(x)=cos(x)(1sin(x))=cot(x)
Commented by Study last updated on 18/Jul/20
how we can calculate (dx/(dcos(x)))?
howwecancalculatedxdcos(x)?
Commented by bobhans last updated on 18/Jul/20
(dx/(d(cos x))) = (1/((d(cos x))/dx)) = (1/(−sin x))
dxd(cosx)=1d(cosx)dx=1sinx
Answered by bobhans last updated on 18/Jul/20
((d(sin x))/(d(((d(sin x))/dx)))) = ((d(sin x))/(d(cos x))) = ((d(sin x))/dx) × (dx/(d(cos x)))  = cos x × (1/((d(cos x))/dx)) = cos x ×(1/(−sin x))  = −cot x
d(sinx)d(d(sinx)dx)=d(sinx)d(cosx)=d(sinx)dx×dxd(cosx)=cosx×1d(cosx)dx=cosx×1sinx=cotx

Leave a Reply

Your email address will not be published. Required fields are marked *