Menu Close

d-dn-n-




Question Number 147356 by Mrsof last updated on 20/Jul/21
(d/dn)(n!)
$$\frac{{d}}{{dn}}\left({n}!\right) \\ $$
Answered by puissant last updated on 20/Jul/21
Γ(n)=(n−1)!=∫_0 ^(+∞) t^(n−1) e^(−t) dt  (1/(Γ(n)))= ne^(γn) Π_(k=1) ^∞ (1+(n/k))e^(−(n/k))   ln((1/(Γ(n))))=−(ln(Γ(x))  =ln(n)+γn+Σ_(k=1) ^∞ ln(1+(n/k))−(n/k)...  (d/dn)(ln((1/(Γ(n)))))=−((Γ′(n))/(Γ(n)))  =−((1/n)+γ+Σ_(n=1) ^∞ (1/(1+(n/k)))×(1/k)−(1/k))  =−(1/n)−γ+Σ_(k=1) ^∞ (1/k)−(1/(n+k))  ψ(n)=−γ+Σ_(k=1) ^∞ (1/k)−(1/(n−1+k))  ⇒ ψ(n+1)=−γ+Σ_(k=1) ^∞ (1/k)−(1/(n+k))..  ⇒(d/dn)(n!)=((Γ′(n+1))/(Γ(n+1))).........
$$\Gamma\left({n}\right)=\left({n}−\mathrm{1}\right)!=\int_{\mathrm{0}} ^{+\infty} {t}^{{n}−\mathrm{1}} {e}^{−{t}} {dt} \\ $$$$\frac{\mathrm{1}}{\Gamma\left({n}\right)}=\:{ne}^{\gamma{n}} \underset{{k}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{{n}}{{k}}\right){e}^{−\frac{{n}}{{k}}} \\ $$$${ln}\left(\frac{\mathrm{1}}{\Gamma\left({n}\right)}\right)=−\left({ln}\left(\Gamma\left({x}\right)\right)\right. \\ $$$$={ln}\left({n}\right)+\gamma{n}+\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}{ln}\left(\mathrm{1}+\frac{{n}}{{k}}\right)−\frac{{n}}{{k}}… \\ $$$$\frac{{d}}{{dn}}\left({ln}\left(\frac{\mathrm{1}}{\Gamma\left({n}\right)}\right)\right)=−\frac{\Gamma'\left({n}\right)}{\Gamma\left({n}\right)} \\ $$$$=−\left(\frac{\mathrm{1}}{{n}}+\gamma+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{1}+\frac{{n}}{{k}}}×\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{k}}\right) \\ $$$$=−\frac{\mathrm{1}}{{n}}−\gamma+\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{n}+{k}} \\ $$$$\psi\left({n}\right)=−\gamma+\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{n}−\mathrm{1}+{k}} \\ $$$$\Rightarrow\:\psi\left({n}+\mathrm{1}\right)=−\gamma+\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{n}+{k}}.. \\ $$$$\Rightarrow\frac{{d}}{{dn}}\left({n}!\right)=\frac{\Gamma'\left({n}+\mathrm{1}\right)}{\Gamma\left({n}+\mathrm{1}\right)}……… \\ $$
Commented by ArielVyny last updated on 20/Jul/21
nice sir
$${nice}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *