Menu Close

d-dn-n-1-H-n-




Question Number 146442 by qaz last updated on 13/Jul/21
(d/dn)∣_(n=1) H_n =?
ddnn=1Hn=?
Answered by mnjuly1970 last updated on 13/Jul/21
= (d/dn)(∫_0 ^( 1) ((1−x^( n) )/(1−x)))=∫_0 ^( 1) ((−x^( n) ln(x ))/(1−x))dx     = ∫_0 ^( 1) ((−xln(x))/(1−x)) dx=−∫_0 ^( 1) (((1−x)ln(1−x))/x)dx  = li_2 ( 1) +∫_0 ^( 1) ln(1−x)dx   = (π^( 2) /6) + ∫_0 ^( 1) ln(x)dx=−1+(π^( 2) /6) ....
=ddn(011xn1x)=01xnln(x)1xdx=01xln(x)1xdx=01(1x)ln(1x)xdx=li2(1)+01ln(1x)dx=π26+01ln(x)dx=1+π26.
Answered by mnjuly1970 last updated on 13/Jul/21
  ψ (n+1 ):= −γ + H_( n)       (1/n) + ψ (n) =−γ +H_( n)       (d/(d n)) (H n)∣_ = −1 +ψ′(1)           = −1 +(π^( 2) /6)= −1+ ζ (2) ...
ψ(n+1):=γ+Hn1n+ψ(n)=γ+Hnddn(Hn)=1+ψ(1)=1+π26=1+ζ(2)
Commented by qaz last updated on 13/Jul/21
thank you sir.  I think it is possible to use differential chain rule,  same like (∂/∂x)∫_(h(x)) ^(g(x)) f(x,t)dt=∫_(h(x)) ^(g(x)) (∂/∂x)f(x,t)dt+g(x)′f(x,g(x))−h(x)′f(x,h(x))  ,to differential to a seiris summation.....
thankyousir.Ithinkitispossibletousedifferentialchainrule,samelikexh(x)g(x)f(x,t)dt=h(x)g(x)xf(x,t)dt+g(x)f(x,g(x))h(x)f(x,h(x)),todifferentialtoaseirissummation..
Commented by mnjuly1970 last updated on 13/Jul/21
thank you sir qaz
thankyousirqaz

Leave a Reply

Your email address will not be published. Required fields are marked *