Menu Close

d-dx-1-x-x-




Question Number 94984 by bobhans last updated on 22/May/20
(d/dx) [(1/x) +(√x) ] ?
$$\frac{\mathrm{d}}{\mathrm{dx}}\:\left[\frac{\mathrm{1}}{\mathrm{x}}\:+\sqrt{\mathrm{x}}\:\right]\:? \\ $$
Commented by MJS last updated on 22/May/20
sorry but how can someone be able to solve  a differential equation and at the same time  be unable to solve basic derivations?
$$\mathrm{sorry}\:\mathrm{but}\:\mathrm{how}\:\mathrm{can}\:\mathrm{someone}\:\mathrm{be}\:\mathrm{able}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\mathrm{a}\:\mathrm{differential}\:\mathrm{equation}\:\mathrm{and}\:\mathrm{at}\:\mathrm{the}\:\mathrm{same}\:\mathrm{time} \\ $$$$\mathrm{be}\:\mathrm{unable}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{basic}\:\mathrm{derivations}? \\ $$
Commented by bobhans last updated on 22/May/20
i want to compare my answer
$$\mathrm{i}\:\mathrm{want}\:\mathrm{to}\:\mathrm{compare}\:\mathrm{my}\:\mathrm{answer} \\ $$
Answered by i jagooll last updated on 22/May/20
−(1/x^2 ) + (1/(2(√x)))
$$−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{x}}}\: \\ $$
Commented by bobhans last updated on 22/May/20
thank you
$$\mathrm{thank}\:\mathrm{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *