Menu Close

d-dxdy-x-y-2-1-x-1-y-D-




Question Number 172944 by flor last updated on 03/Jul/22
∫∫_d dxdy      x=y^2 −1      x=1−y  D=?
$$\int\int_{{d}} {dxdy}\:\:\:\:\:\:{x}={y}^{\mathrm{2}} −\mathrm{1}\:\:\:\:\:\:{x}=\mathrm{1}−{y} \\ $$$${D}=? \\ $$
Commented by kaivan.ahmadi last updated on 04/Jul/22
x=y^2 −1⇒y^2 =x+1⇒y=±(√(x+1))  D_1 :  −1≤x≤0  , −(√(x+1))≤y≤(√(x+1))  −−−−−−−−−−−−−  y=1−x⇒y=1−y^2 +1⇒y^2 −y−2=0  (y−2)(y+1)=0⇒y=2,−1  if y=−1⇒x=1−y=1+1=2  D_2 :  0≤x≤2  , −(√(x+1))≤y≤1−x  −−−−−−−−−−−−−  D=D_1 ∪D_2
$${x}={y}^{\mathrm{2}} −\mathrm{1}\Rightarrow{y}^{\mathrm{2}} ={x}+\mathrm{1}\Rightarrow{y}=\pm\sqrt{{x}+\mathrm{1}} \\ $$$${D}_{\mathrm{1}} : \\ $$$$−\mathrm{1}\leqslant{x}\leqslant\mathrm{0}\:\:,\:−\sqrt{{x}+\mathrm{1}}\leqslant{y}\leqslant\sqrt{{x}+\mathrm{1}} \\ $$$$−−−−−−−−−−−−− \\ $$$${y}=\mathrm{1}−{x}\Rightarrow{y}=\mathrm{1}−{y}^{\mathrm{2}} +\mathrm{1}\Rightarrow{y}^{\mathrm{2}} −{y}−\mathrm{2}=\mathrm{0} \\ $$$$\left({y}−\mathrm{2}\right)\left({y}+\mathrm{1}\right)=\mathrm{0}\Rightarrow{y}=\mathrm{2},−\mathrm{1} \\ $$$${if}\:{y}=−\mathrm{1}\Rightarrow{x}=\mathrm{1}−{y}=\mathrm{1}+\mathrm{1}=\mathrm{2} \\ $$$${D}_{\mathrm{2}} : \\ $$$$\mathrm{0}\leqslant{x}\leqslant\mathrm{2}\:\:,\:−\sqrt{{x}+\mathrm{1}}\leqslant{y}\leqslant\mathrm{1}−{x} \\ $$$$−−−−−−−−−−−−− \\ $$$${D}={D}_{\mathrm{1}} \cup{D}_{\mathrm{2}} \\ $$$$ \\ $$
Answered by kaivan.ahmadi last updated on 04/Jul/22
Commented by kaivan.ahmadi last updated on 04/Jul/22
red line: y=1−x
$${red}\:{line}:\:{y}=\mathrm{1}−{x} \\ $$
Commented by CElcedricjunior last updated on 05/Jul/22
A=∫_(−1) ^1 ∫_(y−1) ^(y^2 −1) dxdy     =∫_(−1) ^1 [x]_(y−1) ^(y^2 −1) dy     =∫_(−1) ^1 (y^2 −y)dy     =[(y^3 /3)+(y^2 /2)+2y]_(−1) ^1      =(2/3)  A=(2/3)      .........Le ce^� le^� bre cedric junior.........
$$\boldsymbol{{A}}=\int_{−\mathrm{1}} ^{\mathrm{1}} \int_{\boldsymbol{{y}}−\mathrm{1}} ^{\boldsymbol{\mathrm{y}}^{\mathrm{2}} −\mathrm{1}} \boldsymbol{\mathrm{dxdy}} \\ $$$$\:\:\:=\int_{−\mathrm{1}} ^{\mathrm{1}} \left[\boldsymbol{\mathrm{x}}\right]_{\boldsymbol{\mathrm{y}}−\mathrm{1}} ^{{y}^{\mathrm{2}} −\mathrm{1}} \boldsymbol{\mathrm{dy}} \\ $$$$\:\:\:=\int_{−\mathrm{1}} ^{\mathrm{1}} \left(\boldsymbol{\mathrm{y}}^{\mathrm{2}} −\boldsymbol{\mathrm{y}}\right)\boldsymbol{\mathrm{dy}} \\ $$$$\:\:\:=\left[\frac{\boldsymbol{\mathrm{y}}^{\mathrm{3}} }{\mathrm{3}}+\frac{\boldsymbol{\mathrm{y}}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{2}\boldsymbol{\mathrm{y}}\right]_{−\mathrm{1}} ^{\mathrm{1}} \\ $$$$\:\:\:=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\mathscr{A}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$$$………\mathscr{L}{e}\:{c}\acute {{e}l}\grave {{e}bre}\:{cedric}\:{junior}……… \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *