Menu Close

decompose-F-x-1-1-x-2-1-x-2-inside-R-x-




Question Number 32333 by abdo imad last updated on 23/Mar/18
decompose F(x) = (1/((1−x)^2 (1−x^2 ))) inside R(x).
decomposeF(x)=1(1x)2(1x2)insideR(x).
Commented by abdo imad last updated on 01/Apr/18
F(x)= (1/((1−x)^2 (1−x)(1+x))) = (1/((1−x)^3 (1+x))) =((−1)/((x−1)^3 (x+1)))  = (a/(x−1)) +(b/((x−1)^2 )) +(c/((x−1)^3 )) +(d/(x+1))  c =lim_(x→1) (x−1)^3 F(x)=((−1)/2)  d =lim_(x→−1) (x+1)F(x) = (1/8) ⇒  F(x)= (a/(x−1))  +(b/((x−1)^2 )) −(1/(2(x−1)^3 )) + (1/(8(x+1)))  F(0) =1 = −a +b +(1/2) +(1/8) =−a+b +(5/8)  ⇒−a+b =1−(5/8) =(3/8)  F(2)=((−1)/3) = a+b −(1/2) +(1/(24)) =a+b  −((11)/(24))  ⇒a+b = −(1/3) +((11)/(24)) = (3/(24)) =(1/8) we get the system  −a+b =(3/8) and  a+b =(1/8) ⇒ 2b = (1/2) ⇒b=(1/4)  a=(1/8) −b =(1/8) −(1/4) = −(1/8) and  F(x)= ((−1)/(8(x−1)))  +(1/(4(x−1)^2 )) −(1/(2(x−1)^3 ))+(1/(8(x+1))) .
F(x)=1(1x)2(1x)(1+x)=1(1x)3(1+x)=1(x1)3(x+1)=ax1+b(x1)2+c(x1)3+dx+1c=limx1(x1)3F(x)=12d=limx1(x+1)F(x)=18F(x)=ax1+b(x1)212(x1)3+18(x+1)F(0)=1=a+b+12+18=a+b+58a+b=158=38F(2)=13=a+b12+124=a+b1124a+b=13+1124=324=18wegetthesystema+b=38anda+b=182b=12b=14a=18b=1814=18andF(x)=18(x1)+14(x1)212(x1)3+18(x+1).

Leave a Reply

Your email address will not be published. Required fields are marked *