Menu Close

decompose-F-x-1-x-1-3-x-3-7-and-detrmine-F-x-dx-2-calculate-2-F-x-dx-




Question Number 81336 by mathmax by abdo last updated on 11/Feb/20
decompose F(x)=(1/((x−1)^3 (x+3)^7 ))  and detrmine  ∫ F(x)dx  2) calculate ∫_2 ^(+∞)  F(x)dx
decomposeF(x)=1(x1)3(x+3)7anddetrmineF(x)dx2)calculate2+F(x)dx
Commented by Tony Lin last updated on 12/Feb/20
∫(dx/((x−1)^3 (x+3)^7 ))  let u=((x+3)/(x−1)) , (du/dx)=((−4)/((x−1)^2 ))  x=((u+3)/(u−1))  ⇒−(1/4)∫(du/(((4/(u−1)))(((4u)/(u−1)))^7 ))  =−(1/4^9 )∫(((u−1)^8 )/u^7 )du  =∫(u−8+((28)/u)−((56)/u^2 )+((70)/u^3 )−((56)/u^4 )+((28)/u^5 )−(8/u^6 )+(1/u^7 ))du  ×(−(1/4^9 ))  =((u^2 /2)−8u+28ln∣u∣+((56)/u)−((35)/u^2 )+((56)/(3u^3 ))−(7/u^4 )  +(8/(5u^5 ))−(1/(6u^(6 ) )))×(−(1/(262144)))+c  plug u=((x+3)/(x−1)) in  ⇒∫(dx/((x−1)^3 (x+3)^7 ))  =−(1/(262144))[(((((x+3)/(x−1)))^2 )/2)−((8(x+3))/(x−1))+28ln∣((x+3)/(x−1))∣  +((56(x−1))/(x+3))−35(((x−1)/(x+3)))^2 +((56)/3)(((x−1)/(x+3)))^3 −  7(((x−1)/(x+3)))^4 +(8/5)(((x−1)/(x+3)))^5 −(1/6)(((x−1)/(x+3)))^6 ]+c
dx(x1)3(x+3)7letu=x+3x1,dudx=4(x1)2x=u+3u114du(4u1)(4uu1)7=149(u1)8u7du=(u8+28u56u2+70u356u4+28u58u6+1u7)du×(149)=(u228u+28lnu+56u35u2+563u37u4+85u516u6)×(1262144)+cplugu=x+3x1indx(x1)3(x+3)7=1262144[(x+3x1)228(x+3)x1+28lnx+3x1+56(x1)x+335(x1x+3)2+563(x1x+3)37(x1x+3)4+85(x1x+3)516(x1x+3)6]+c
Commented by Tony Lin last updated on 12/Feb/20
∫(dx/((x+a)^m (x+b)^n ))  let u=((x+b)/(x+a)) , (du/dx)=((a−b)/((x+a)^2 ))  x=((b−au)/(u−1))  ⇒(1/(a−b))∫(du/((((b−a)/(u−1)))^(m−2) [(((b−a)u)/(u−1))]^n ))  =−(1/((b−a)^(m+n−1) ))∫ (((u−1)^(m+n−2) )/u^n )du  =∫((Σ_(r=0) ^(m+n−2) C_r ^(m+n−2) (((x+b)/(x+a)))^(r−n) (−1)^(m+n−2−r) )/(−(b−a)^(m+n−1) ))d(((x+b)/(x+a)))
dx(x+a)m(x+b)nletu=x+bx+a,dudx=ab(x+a)2x=bauu11abdu(bau1)m2[(ba)uu1]n=1(ba)m+n1(u1)m+n2undu=m+n2r=0Crm+n2(x+bx+a)rn(1)m+n2r(ba)m+n1d(x+bx+a)
Commented by mathmax by abdo last updated on 12/Feb/20
thank you sir.
thankyousir.
Commented by MJS last updated on 12/Feb/20
on my path the hard work is solving the  system for the coefficients c_j   on your path it is to compose all those fractions  if needed
onmypaththehardworkissolvingthesystemforthecoefficientscjonyourpathitistocomposeallthosefractionsifneeded
Commented by mathmax by abdo last updated on 12/Feb/20
∫F(x)dx =∫  (dx/((x−1)^3 (x+3)^7 )) =∫  (dx/((((x−1)/(x+3)))^3 (x+3)^(10) )) changement  ((x−1)/(x+3))=t give x−1=tx+3t ⇒(1−t)x=3t+1 ⇒x=((3t+1)/(1−t)) ⇒  x+3=3+((3t+1)/(1−t)) =((3−3t+3t+1)/(1−t)) =(4/(1−t)) ⇒dx =(4/((1−t)^2 )) ⇒  ∫F(x)dx =∫ ((4dt)/((t−1)^2 t^3 ((4/(1−t)))^(10) )) =4 ∫  (((t−1)^(10) )/(4^(10) (t−1)^2 t^3 ))dt  =(1/4^9 ) ∫  (((t−1)^8 )/t^3 )dt =(1/4^9 )∫  ((Σ_(k=0) ^8  C_8 ^k  t^k (−1)^(8−k) )/t^3 )dt  =(1/4^9 ) ∫  ((1−C_8 ^1  t +C_8 ^2  t^2 −C_8 ^3  t^3  +C_8 ^4  t^4 −C_8 ^5  t^5  +C_8 ^6  t^6 −C_8 ^7 t^7 +C_8 ^8  t^8 )/t^3 )dt  =(1/4^9 ) ∫ (dt/t^3 ) −(C_8 ^1 /4^9 ) ∫  (dt/t^2 ) +(C_8 ^2 /4^9 )∫ (dt/t) −(C_8 ^3 /4^9 )∫dt  (C_8 ^4 /4^9 ) ∫ tdt−(C_8 ^5 /4^9 ) ∫ t^2 dt  +(C_8 ^6 /4^9 )∫ t^3  dt −(C_8 ^7 /4^9 ) ∫ t^4  dt  +(C_8 ^8 /4^9 )∫ t^5  dt  =−(1/(2×4^9  ×t^2 )) +(8/(4^9 ×t)) +(C_8 ^2 /4^9 )ln∣t∣−(C_8 ^3 /4^9 )t  +(C_8 ^4 /(2.4^9 ))t^2 −(C_8 ^5 /(3.4^9 ))t^3  +(C_8 ^6 /4^(10) )t^4   −(C_8 ^7 /(5.4^9 ))t^5  +(1/(6.4^9 ))t^6  +C  =−(1/(2.4^9 ))(((x+3)/(x−1)))^2  +(8/4^9 )(((x+3)/(x−1)))+(C_8 ^2 /4^9 )ln∣((x−1)/(x+3))∣−(C_8 ^3 /4^9 )(((x−1)/(x+3)))  +(C_8 ^4 /(2.4^9 ))(((x−1)/(x+3)))^2  −(C_8 ^5 /(3.4^9 ))(((x−1)/(x+3)))^3  +(C_8 ^6 /4^(10) )(((x−1)/(x+3)))^4  −(C_8 ^7 /(5.4^9 ))(((x−1)/(x+3)))^5  +(1/(6.4^9 ))(((x−1)/(x+3)))^6  +C
F(x)dx=dx(x1)3(x+3)7=dx(x1x+3)3(x+3)10changementx1x+3=tgivex1=tx+3t(1t)x=3t+1x=3t+11tx+3=3+3t+11t=33t+3t+11t=41tdx=4(1t)2F(x)dx=4dt(t1)2t3(41t)10=4(t1)10410(t1)2t3dt=149(t1)8t3dt=149k=08C8ktk(1)8kt3dt=1491C81t+C82t2C83t3+C84t4C85t5+C86t6C87t7+C88t8t3dt=149dtt3C8149dtt2+C8249dttC8349dtC8449tdtC8549t2dt+C8649t3dtC8749t4dt+C8849t5dt=12×49×t2+849×t+C8249lntC8349t+C842.49t2C853.49t3+C86410t4C875.49t5+16.49t6+C=12.49(x+3x1)2+849(x+3x1)+C8249lnx1x+3C8349(x1x+3)+C842.49(x1x+3)2C853.49(x1x+3)3+C86410(x1x+3)4C875.49(x1x+3)5+16.49(x1x+3)6+C
Commented by mathmax by abdo last updated on 12/Feb/20
∫_2 ^(+∞) F(x)dx =−(1/(2.4^9 ))[(((x+3)/(x−1)))^2 ]_2 ^(+∞)  +(8/4^9 )[(((x+3)/(x−1)))]_2 ^(+∞)  +(C_8 ^2 /4^9 )[ln∣((x−1)/(x+3))∣]_2 ^(+∞)   −(C_8 ^3 /4^9 )[(((x−1)/(x+3)))]_2 ^(+∞)  +(C_8 ^4 /(2.4^9 ))[(((x−1)/(x+3)))^2 ]_2 ^(+∞) −(C_8 ^5 /(3.4^9 ))[(((x−1)/(x+3)))^3 ]_2 ^(+∞)   +(C_8 ^6 /4^(10) )[(((x−1)/(x+3)))^4 ]_2 ^(+∞) −(C_8 ^7 /(5.4^9 ))[(((x−1)/(x+3)))^5 ]_2 ^(+∞) +(1/(6.4^9 ))[(((x−1)/(x+3)))^6 ]_2 ^(+∞)   =−(1/(2.4^9 )){1−5^2 }+(8/4^9 ){1−5}+(C_8 ^2 /4^9 ){−ln((1/5))}  −(C_8 ^3 /4^9 ){1−(1/5)}+(C_8 ^4 /(2.4^9 )){1−((1/5))^2 }−(C_8 ^5 /(3.4^9 )){1−((1/5))^3 }  +(C_8 ^6 /4^(10) ){1−((1/5))^4 }−(C_8 ^7 /(5.4^9 )){1−((1/5))^5 } +(1/(6.4^9 )){1−((1/5))^6 }
2+F(x)dx=12.49[(x+3x1)2]2++849[(x+3x1)]2++C8249[lnx1x+3]2+C8349[(x1x+3)]2++C842.49[(x1x+3)2]2+C853.49[(x1x+3)3]2++C86410[(x1x+3)4]2+C875.49[(x1x+3)5]2++16.49[(x1x+3)6]2+=12.49{152}+849{15}+C8249{ln(15)}C8349{115}+C842.49{1(15)2}C853.49{1(15)3}+C86410{1(15)4}C875.49{1(15)5}+16.49{1(15)6}
Commented by mathmax by abdo last updated on 12/Feb/20
the avantage of this method is finding integral without passing  by decomposition..!
theavantageofthismethodisfindingintegralwithoutpassingbydecomposition..!
Answered by MJS last updated on 12/Feb/20
Ostrogradski′s Method again (it′s faster in my  opinion)  ∫(dx/((x+3)^7 (x−1)^3 ))  ∫((P(x))/(Q(x)))dx=((P_1 (x))/(Q_1 (x)))+∫((P_2 (x))/(Q_2 (x)))dx  Q_1 (x)=gcd (Q(x), Q^′ (x))=(x+3)^6 (x−1)^2 oo  Q_2 (x)=((Q(x))/(Q_1 (x)))=(x+3)(x−1)  ((P(x))/(Q(x)))=(d/dx)[((P_1 (x))/(Q_1 (x)))]+((P_2 (x))/(Q_2 (x)))  (1/((x+3)^7 (x−1)^3 ))=(d/dx)[((Σ_(j=0) ^7 c_j x^j )/((x+3)^6 (x−1)^2 ))]+((d_1 x+d_0 )/((x+3)(x−1)))  ⇒  P_1 (x)=((105x^7 +1575x^6 +9065x^5 +23135x^4 +15491x^3 −38339x^2 −56405x+14653)/(245760))  P_2 (x)=(7/(16384))  ⇒ we only have to solve (7/(16384))∫(dx/((x+3)(x−1)))=  =(7/(65536))ln ∣((x−1)/(x+3))∣  ∫(dx/((x+3)^7 (x−1)^3 ))=  =((105x^7 +1575x^6 +9065x^5 +23135x^4 +15491x^3 −38339x^2 −56405x+14653)/(245760(x+3)^6 (x−1)^2 ))+(7/(65536))ln ∣((x−1)/(x+3))∣ +C  ∫_2 ^∞ (dx/((x+3)^7 (x−1)^3 ))=((−517516+328125ln 5)/(3072000000))
OstrogradskisMethodagain(itsfasterinmyopinion)dx(x+3)7(x1)3P(x)Q(x)dx=P1(x)Q1(x)+P2(x)Q2(x)dxQ1(x)=gcd(Q(x),Q(x))=(x+3)6(x1)2ooQ2(x)=Q(x)Q1(x)=(x+3)(x1)P(x)Q(x)=ddx[P1(x)Q1(x)]+P2(x)Q2(x)1(x+3)7(x1)3=ddx[7j=0cjxj(x+3)6(x1)2]+d1x+d0(x+3)(x1)P1(x)=105x7+1575x6+9065x5+23135x4+15491x338339x256405x+14653245760P2(x)=716384weonlyhavetosolve716384dx(x+3)(x1)==765536lnx1x+3dx(x+3)7(x1)3==105x7+1575x6+9065x5+23135x4+15491x338339x256405x+14653245760(x+3)6(x1)2+765536lnx1x+3+C2dx(x+3)7(x1)3=517516+328125ln53072000000
Commented by john santu last updated on 12/Feb/20
ostrogradski′s method can use any   type integral?
ostrogradskismethodcanuseanytypeintegral?
Commented by msup trace by abdo last updated on 12/Feb/20
thank you sir .
thankyousir.
Commented by MJS last updated on 12/Feb/20
no. P(x) and Q(x) must be polynomes.  the degree of P(x) must be smaller than  the degree of Q(x) and all coefficients must  be real  the degree of P_1 (x) will then be smaller than  the degree of Q_1 (x), same for P_2 (x) and Q_2 (x)  I think you can find information on wikipedia
no.P(x)andQ(x)mustbepolynomes.thedegreeofP(x)mustbesmallerthanthedegreeofQ(x)andallcoefficientsmustberealthedegreeofP1(x)willthenbesmallerthanthedegreeofQ1(x),sameforP2(x)andQ2(x)Ithinkyoucanfindinformationonwikipedia
Commented by jagoll last updated on 12/Feb/20
thank you mister
thankyoumister

Leave a Reply

Your email address will not be published. Required fields are marked *