decompose-F-x-2x-1-x-2-1-2-x-2-3-and-calculate-2-F-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 119425 by mathmax by abdo last updated on 24/Oct/20 decomposeF(x)=2x−1(x2−1)2(x2+3)andcalculate∫2+∞F(x)dx Answered by 1549442205PVT last updated on 24/Oct/20 F(x)=2x−1(x2−1)2(x2+3)=ax+bx2+3+mx3+nx2+px+qx4−2x2+1⇔(a+m)x5+(b+n)x4+(3m+p−2a)x3+(3n+q−2b)x2+(a+3p)x+b+3q=2x−1⇔{a+m=0b+n=03m+p−2a=03n+q−2b=0a+3p=2b+3q=−1{5m+p=05n+q=0−m+3p=2−n+3q=−116q=−5⇒q=−5/16⇒n=1/1616p=10⇒p=10/16⇒m=−2/16⇒a=2/16,b=−1/16HencewehaveF(x)=2x−1(x2−1)2(x2+3)=2x−116(x2+3)−2x3−x2−10x+516(x2−1)22x3−x2−10x+5=(x2−1)(2x−1)−8x+4⇒2x3−x2−10x+516(x2−1)2=2x−116(x2−1)−8x−416(x2−1)22x2−1=1x−1−1x+1=a−b⇒2ab=a−b⇒4(x2−1)2=(a−b)2=a2+b2−(a−b)⇒F(x)=2x−116(x2+3)−2x−116(x2−1)+4(2x−1)16(x2−1)2∫2∞F(x)=∫2∞d(x2+3)16(x2+3−116∫2∞dx(x2+3)−116∫2∞d(x2−1)x2−1+116∫2∞dxx2−1+14∫2∞d(x2−1)(x2−1)2−14∫2∞dx(x2−1)2(1).WehaveJ=116∫2∞dx(x2−1)=132∫2∞(1x−1−1x+1)dx=132ln∣x−1x+1∣2∞=−132ln2−12+1=−116ln(2−1)I=14∫2∞dx(x2−1)2=116∫2∞(1x−1−1x+1)2dx=116∫2∞(1(x−1)2+1(x+1)2−1x−1+1x+1)dx(2)=116[[−1x−1−1x+1+ln∣x+1x−1∣]2∞=164(12−1+12+1−ln2+12−1)=116[22−2ln(2+1)]From(1)(2)weget∫2∞F(x)dx=∫2∞2x−1(x2−1)2(x2+3)dx=[116ln(x2+3)−116.13tan−1(x3)−116ln∣x2−1∣−14(x2−1)]2∞+J−I=116lnx2+3x2−1−1163tan−1(x3)−14(x2−1)]2∞−116ln(2−1)−116(22−2ln(1+2)=−π323−116ln5+1163tan−1(63)+14−28+316ln(2+1)≈0.1059174283 Commented by Bird last updated on 24/Oct/20 thankyousir Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-184959Next Next post: Question-184960 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.