Menu Close

decompose-F-x-2x-1-x-2-1-2-x-2-3-and-calculate-2-F-x-dx-




Question Number 119425 by mathmax by abdo last updated on 24/Oct/20
decompose F(x) =((2x−1)/((x^2 −1)^2 (x^2 +3)))  and calculate ∫_(√2) ^(+∞) F(x)dx
decomposeF(x)=2x1(x21)2(x2+3)andcalculate2+F(x)dx
Answered by 1549442205PVT last updated on 24/Oct/20
F(x) =((2x−1)/((x^2 −1)^2 (x^2 +3)))=((ax+b)/(x^2 +3))+((mx^3 +nx^2 +px+q)/(x^4 −2x^2 +1))  ⇔(a+m)x^5 +(b+n)x^4 +(3m+p−2a)x^3   +(3n+q−2b)x^2 +(a+3p)x+b+3q=2x−1  ⇔ { ((a+m=0)),((b+n=0)),((3m+p−2a=0)),((3n+q−2b=0)),((a+3p=2)),((b+3q=−1)) :} { ((5m+p=0)),((5n+q=0)),((−m+3p=2)),((−n+3q=−1)) :}  16q=−5⇒q=−5/16⇒n=1/16  16p=10⇒p=10/16⇒m=−2/16  ⇒a=2/16,b=−1/16  Hence we have  F(x) =((2x−1)/((x^2 −1)^2 (x^2 +3)))  =((2x−1)/(16(x^2 +3)))−((2x^3 −x^2 −10x+5)/(16(x^2 −1)^2 ))  2x^3 −x^2 −10x+5=(x^2 −1)(2x−1)−8x+4  ⇒((2x^3 −x^2 −10x+5)/(16(x^2 −1)^2 ))=((2x−1)/(16(x^2 −1)))−((8x−4)/(16(x^2 −1)^2 ))  (2/(x^2 −1))=(1/(x−1))−(1/(x+1))=a−b⇒2ab=a−b  ⇒(4/((x^2 −1)^2 ))=(a−b)^2 =a^2 +b^2 −(a−b)  ⇒F(x)=((2x−1)/(16(x^2 +3)))−((2x−1)/(16(x^2 −1)))+((4(2x−1))/(16(x^2 −1)^2 ))  ∫_(√2) ^∞ F(x)=∫_(√2) ^∞ ((d(x^2 +3))/(16(x^2 +3))−(1/(16))∫_(√2) ^∞ (dx/((x^2 +3)))  −(1/(16))∫_(√2) ^∞ ((d(x^2 −1))/(x^2 −1))+(1/(16))∫_(√2) ^∞ (dx/(x^2 −1))+(1/4)∫_(√2) ^∞ ((d(x^2 −1))/((x^2 −1)^2 ))  −(1/4)∫_(√2) ^∞ (dx/((x^2 −1)^2 )) (1).We have  J=(1/(16))∫_(√2) ^∞ (dx/((x^2 −1)))=(1/(32))∫_(√2) ^∞ ((1/(x−1))−(1/(x+1)))dx  =(1/(32))ln∣((x−1)/(x+1))∣_(√2) ^∞ =−(1/(32))ln(((√2)−1)/( (√2)+1))=−(1/(16))ln((√2)−1)  I=(1/4)∫_(√2) ^∞ (dx/((x^2 −1)^2 ))=(1/(16))∫_(√2) ^∞ ((1/(x−1))−(1/(x+1)))^2 dx=  (1/(16))∫_(√2) ^∞ ((1/((x−1)^2 ))+(1/((x+1)^2 ))−(1/(x−1))+(1/(x+1)))dx(2)  =(1/(16))[[−(1/(x−1))−(1/(x+1))+ln∣((x+1)/(x−1∣))]_(√2) ^∞   =(1/(64))((1/( (√2)−1))+(1/( (√2)+1))−ln(((√2)+1)/( (√2)−1)))=(1/(16))[2(√2) −2ln((√2)+1)]  From (1)(2)we get  ∫_(√2) ^∞ F(x) dx=∫_(√2) ^∞ ((2x−1)/((x^2 −1)^2 (x^2 +3)))dx  =[(1/(16))ln(x^2 +3)−(1/(16)).(1/( (√3)))tan^(−1) ((x/( (√3))))  −(1/(16))ln∣x^2 −1∣−(1/(4(x^2 −1)))]_(√2) ^∞ +J−I  =(1/(16))ln((x^2 +3)/(x^2 −1))−(1/(16(√3)))tan^(−1) ((x/( (√3))))−(1/(4(x^2 −1)))]_(√2) ^∞   −(1/(16))ln((√2)−1)−(1/(16))(2(√2)−2ln(1+(√2) )  =−(π/(32(√3)))−(1/(16))ln5+(1/(16(√3)))tan^(−1) (((√6)/3))+(1/4)  −((√2)/8)+(3/(16))ln((√2) +1)≈0.1059174283
F(x)=2x1(x21)2(x2+3)=ax+bx2+3+mx3+nx2+px+qx42x2+1(a+m)x5+(b+n)x4+(3m+p2a)x3+(3n+q2b)x2+(a+3p)x+b+3q=2x1{a+m=0b+n=03m+p2a=03n+q2b=0a+3p=2b+3q=1{5m+p=05n+q=0m+3p=2n+3q=116q=5q=5/16n=1/1616p=10p=10/16m=2/16a=2/16,b=1/16HencewehaveF(x)=2x1(x21)2(x2+3)=2x116(x2+3)2x3x210x+516(x21)22x3x210x+5=(x21)(2x1)8x+42x3x210x+516(x21)2=2x116(x21)8x416(x21)22x21=1x11x+1=ab2ab=ab4(x21)2=(ab)2=a2+b2(ab)F(x)=2x116(x2+3)2x116(x21)+4(2x1)16(x21)22F(x)=2d(x2+3)16(x2+31162dx(x2+3)1162d(x21)x21+1162dxx21+142d(x21)(x21)2142dx(x21)2(1).WehaveJ=1162dx(x21)=1322(1x11x+1)dx=132lnx1x+12=132ln212+1=116ln(21)I=142dx(x21)2=1162(1x11x+1)2dx=1162(1(x1)2+1(x+1)21x1+1x+1)dx(2)=116[[1x11x+1+lnx+1x1]2=164(121+12+1ln2+121)=116[222ln(2+1)]From(1)(2)weget2F(x)dx=22x1(x21)2(x2+3)dx=[116ln(x2+3)116.13tan1(x3)116lnx2114(x21)]2+JI=116lnx2+3x211163tan1(x3)14(x21)]2116ln(21)116(222ln(1+2)=π323116ln5+1163tan1(63)+1428+316ln(2+1)0.1059174283
Commented by Bird last updated on 24/Oct/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *