Question Number 79108 by mathmax by abdo last updated on 22/Jan/20

Commented by mathmax by abdo last updated on 31/Jan/20

Answered by mind is power last updated on 22/Jan/20
![over C(x) x^(2n) +1=0⇒x^(2n) =−1=e^(iπ+2kπ) x_k =e^(((i(1+2k)π)/(2n)) ) ,k∈[0,2n−1] x_(2n−k−1) =e^(i(((1+2(2n−k−1))/(2n)))π) =e^(−i(((1+2k)/(2n)))π) ⇒x_k =x_(2n−1−k) ^− ,E ((nx^n )/(x^(2n) +1))=Σ(a_k /(x−x_k )) a_k =((nx_k )/(2nx_k ^(2n−1) ))=(1/(2x_k ^(2n−2) ))=−(x_k ^2 /2) ((nx^n )/(x^(2n) +1))=−(1/2)Σ_(k=0) ^(2n−1) (x_k ^2 /((x−x_k ))) over R(X) −(1/2)Σ_(k=0) ^(2n−1) (x_k ^2 /((x−x_k )))=−(1/2).{Σ_(k=0) ^(n−1) (x_k ^2 /(x−x_k ))+Σ_(k=n) ^(2n−1) (x_k ^2 /(x−x_k ))} =−(1/2){Σ_(k=0) ^(n−1) [(x_k ^2 /(x−x_k ))+(x_(2n−1−k) ^2 /(x−x_(2n−1−k) ))]}ByE⇒ =−(1/2){Σ_(k=0) ^(n−1) [(x_k ^2 /(x−x_k ))+(x_k ^(−2) /(x−x_k ^− ))]} =−(1/2)Σ_(k=0) ^(n−1) [((x(x_k ^2 +x_k ^(−2) )−x_k ^− x_k ^2 −x_k x_k ^(−2) )/(x^2 −2Re(x_k )x+∣x_k ∣^2 )) =−(1/2)Σ_(k=0) ^(n−1) ((2x(Re(x_k ^2 ))−2Re(x_k ))/(x^2 −2Re(x_k )+1)) =−(1/2)Σ_(k=0) ^(n−1) ((2x(cos(((1+2k)/n)π))−2cos(((1+2k)/(2n))π))/(x^2 −2cos(((1+2k)/(2n))π)+1)) over IR(x) ∫_0 ^(+∞) n(x^n /(x^(2n) +1))dx x=tg^(1/n) (t)⇒dx=(1/n)(1+tg^2 (t))tg^((1/n)−1) (t)dt =∫_0 ^(π/2) tg(t)(((1+tg^2 (t))tg^((1/n)−1) )/(1+tg^2 (t)))dt =∫_0 ^(π/2) tg^(1/n) (t)dt=∫_0 ^(π/2) sin^(1/n) (t)cos^(−(1/n)) (t)dt =(1/2)β(((1+n)/(2n)),((n−1)/(2n)))=(1/2).((Γ(((1+n)/(2n)))Γ(((n−1)/(2n))))/(Γ(((n+1)/(2n))+((n−1)/(2n)))))=((Γ(((n+1)/(2n))).Γ(1−((n+1)/(2n))))/(2Γ(1))) Γ(x)Γ(1−x)=(π/(sin(πx)))⇒Γ(((n+1)/(2n)))Γ(1−((n+1)/(2n)))=(π/(sin(((n+1)/(2n))π))),Γ(1)=1 =(π/(2sin(((n+1)/(2n))π)))=(π/(2cos((π/(2n)))))](https://www.tinkutara.com/question/Q79125.png)
Commented by mathmax by abdo last updated on 23/Jan/20

Commented by mind is power last updated on 23/Jan/20
