Menu Close

decompose-F-x-nx-n-x-2n-1-inside-C-x-and-R-x-n-2-and-determine-0-F-x-dx-




Question Number 79108 by mathmax by abdo last updated on 22/Jan/20
decompose F(x)=((nx^n )/(x^(2n)  +1))  inside C(x) and R(x)  (n≥2)  and determine ∫_0 ^(+∞) F(x)dx
decomposeF(x)=nxnx2n+1insideC(x)andR(x)(n2)anddetermine0+F(x)dx
Commented by mathmax by abdo last updated on 31/Jan/20
another way for ∫_0 ^∞  F(x)dx  we do the changement x^(2n) =t ⇒  x=t^(1/(2n))  ⇒ ∫_0 ^∞  n(x^n /(x^(2n) +1))dx =n∫_0 ^∞    (t^(1/2) /(t+1))×(1/(2n))t^((1/(2n))−1)  dt  =(1/2)∫_0 ^∞   (t^((1/(2n))+(1/2)−1) /(t+1))dt  =(1/2) ×(π/(sin(π((1/(2n))+(1/2))))) =(π/(2sin((π/(2n))+(π/2))))  =(π/(2cos((π/(2n)))))   { ∫_0 ^∞  (t^(a−1) /(1+t))dt =(π/(sin(πa)))=Γ(a)Γ(1−a))  with 0<a<1)}
anotherwayfor0F(x)dxwedothechangementx2n=tx=t12n0nxnx2n+1dx=n0t12t+1×12nt12n1dt=120t12n+121t+1dt=12×πsin(π(12n+12))=π2sin(π2n+π2)=π2cos(π2n){0ta11+tdt=πsin(πa)=Γ(a)Γ(1a))with0<a<1)}
Answered by mind is power last updated on 22/Jan/20
over C(x)  x^(2n) +1=0⇒x^(2n) =−1=e^(iπ+2kπ)   x_k =e^(((i(1+2k)π)/(2n))  ) ,k∈[0,2n−1]  x_(2n−k−1) =e^(i(((1+2(2n−k−1))/(2n)))π) =e^(−i(((1+2k)/(2n)))π)   ⇒x_k =x_(2n−1−k) ^− ,E  ((nx^n )/(x^(2n) +1))=Σ(a_k /(x−x_k ))  a_k =((nx_k )/(2nx_k ^(2n−1) ))=(1/(2x_k ^(2n−2) ))=−(x_k ^2 /2)  ((nx^n )/(x^(2n) +1))=−(1/2)Σ_(k=0) ^(2n−1) (x_k ^2 /((x−x_k )))  over R(X)  −(1/2)Σ_(k=0) ^(2n−1) (x_k ^2 /((x−x_k )))=−(1/2).{Σ_(k=0) ^(n−1) (x_k ^2 /(x−x_k ))+Σ_(k=n) ^(2n−1)  (x_k ^2 /(x−x_k ))}  =−(1/2){Σ_(k=0) ^(n−1) [(x_k ^2 /(x−x_k ))+(x_(2n−1−k) ^2 /(x−x_(2n−1−k) ))]}ByE⇒  =−(1/2){Σ_(k=0) ^(n−1) [(x_k ^2 /(x−x_k ))+(x_k ^(−2) /(x−x_k ^− ))]}  =−(1/2)Σ_(k=0) ^(n−1) [((x(x_k ^2 +x_k ^(−2) )−x_k ^− x_k ^2 −x_k x_k ^(−2) )/(x^2 −2Re(x_k )x+∣x_k ∣^2 ))  =−(1/2)Σ_(k=0) ^(n−1) ((2x(Re(x_k ^2 ))−2Re(x_k ))/(x^2 −2Re(x_k )+1))  =−(1/2)Σ_(k=0) ^(n−1) ((2x(cos(((1+2k)/n)π))−2cos(((1+2k)/(2n))π))/(x^2 −2cos(((1+2k)/(2n))π)+1))  over IR(x)  ∫_0 ^(+∞) n(x^n /(x^(2n) +1))dx  x=tg^(1/n) (t)⇒dx=(1/n)(1+tg^2 (t))tg^((1/n)−1) (t)dt  =∫_0 ^(π/2) tg(t)(((1+tg^2 (t))tg^((1/n)−1)  )/(1+tg^2 (t)))dt  =∫_0 ^(π/2) tg^(1/n) (t)dt=∫_0 ^(π/2) sin^(1/n) (t)cos^(−(1/n)) (t)dt  =(1/2)β(((1+n)/(2n)),((n−1)/(2n)))=(1/2).((Γ(((1+n)/(2n)))Γ(((n−1)/(2n))))/(Γ(((n+1)/(2n))+((n−1)/(2n)))))=((Γ(((n+1)/(2n))).Γ(1−((n+1)/(2n))))/(2Γ(1)))  Γ(x)Γ(1−x)=(π/(sin(πx)))⇒Γ(((n+1)/(2n)))Γ(1−((n+1)/(2n)))=(π/(sin(((n+1)/(2n))π))),Γ(1)=1    =(π/(2sin(((n+1)/(2n))π)))=(π/(2cos((π/(2n)))))
overC(x)x2n+1=0x2n=1=eiπ+2kπxk=ei(1+2k)π2n,k[0,2n1]x2nk1=ei(1+2(2nk1)2n)π=ei(1+2k2n)πxk=x2n1k,Enxnx2n+1=Σakxxkak=nxk2nxk2n1=12xk2n2=xk22nxnx2n+1=122n1k=0xk2(xxk)overR(X)122n1k=0xk2(xxk)=12.{n1k=0xk2xxk+2n1k=nxk2xxk}=12{n1k=0[xk2xxk+x2n1k2xx2n1k]}ByE=12{n1k=0[xk2xxk+x2kxxk]}=12n1k=0[x(xk2+x2k)xkxk2xkx2kx22Re(xk)x+xk2=12n1k=02x(Re(xk2))2Re(xk)x22Re(xk)+1=12n1k=02x(cos(1+2knπ))2cos(1+2k2nπ)x22cos(1+2k2nπ)+1overIR(x)0+nxnx2n+1dxx=tg1n(t)dx=1n(1+tg2(t))tg1n1(t)dt=0π2tg(t)(1+tg2(t))tg1n11+tg2(t)dt=0π2tg1n(t)dt=0π2sin1n(t)cos1n(t)dt=12β(1+n2n,n12n)=12.Γ(1+n2n)Γ(n12n)Γ(n+12n+n12n)=Γ(n+12n).Γ(1n+12n)2Γ(1)Γ(x)Γ(1x)=πsin(πx)Γ(n+12n)Γ(1n+12n)=πsin(n+12nπ),Γ(1)=1=π2sin(n+12nπ)=π2cos(π2n)
Commented by mathmax by abdo last updated on 23/Jan/20
thank you sir.
thankyousir.
Commented by mind is power last updated on 23/Jan/20
y′re Welcom
yreWelcom

Leave a Reply

Your email address will not be published. Required fields are marked *