decompose-F-x-x-2-x-4-1-imside-R-x-2-find-the-value-of-2-x-2-x-4-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 33334 by prof Abdo imad last updated on 14/Apr/18 decomposeF(x)=x2x4−1imsideR(x)2)findthevalueof∫2+∞x2x4−1. Commented by prof Abdo imad last updated on 15/Apr/18 2)findthevalueof∫2+∞x2x4−1dx. Commented by prof Abdo imad last updated on 18/Apr/18 wehaveF(x)=x2(x2−1)(x2+1)=x2−1+1(x2−1)(x2+1)=1x2+1+1(x2−1)(x2+1)letdecomposeg(x)=1(x2−1)(x2+1)g(x)=ax−1+bx+1+cx+dx2+1g(−x)=g(x)⇔−ax+1+−bx−1+−cx+dx2+1=g(x)⇒b=−aandc=0⇒g(x)=ax−1−ax+1+dx2+1g(0)=−1=−2a+d⇒2a−d=1g(2)=13.5=115=a−a3+d5=2a3+d5⇒1=10a+3d⇒10a+3(2a−1)=1⇒16a=4⇒a=14andd=12−1=−12g(x)=14(x−1)−14(x+1)−12(x2+1)⇒F(x)=1x2+1+14(x−1)−14(x+1)−12(x2+1)F(x)=12(x2+1)+14(x−1)−14(x+1) Commented by math khazana by abdo last updated on 19/Apr/18 ∫2+∞x2x4−1dx=12∫2+∞dx1+x2+14∫2+∞(1x−1−1x+1)dx=12[arctanx]2+∞+14[ln∣x−1x+1∣]2+∞=12(π2−arctan2)+14(−ln(13))=π4−12arctan(2)+14ln(3). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calcilate-0-1-dx-1-x-2-3-Next Next post: 1-give-D-n-1-o-for-f-x-1-x-2-2-drcompose-inside-R-x-the-fraction-F-x-1-x-n-x-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.