Menu Close

decompose-F-x-x-2-x-4-1-imside-R-x-2-find-the-value-of-2-x-2-x-4-1-




Question Number 33334 by prof Abdo imad last updated on 14/Apr/18
decompose F(x)= (x^2 /(x^4  −1)) imside R(x)   2) find the value of    ∫_2 ^(+∞)   (x^2 /(x^4  −1))  .
decomposeF(x)=x2x41imsideR(x)2)findthevalueof2+x2x41.
Commented by prof Abdo imad last updated on 15/Apr/18
2) find the value of ∫_2 ^(+∞)   (x^2 /(x^4  −1))  dx.
2)findthevalueof2+x2x41dx.
Commented by prof Abdo imad last updated on 18/Apr/18
we have F(x)=  (x^2 /((x^2  −1)(x^2  +1)))  =((x^2  −1 +1)/((x^2 −1)(x^2  +1))) =  (1/(x^2  +1))  + (1/((x^2 −1)(x^2  +1)))  let decompose g(x)=  (1/((x^2 −1)(x^2  +1)))  g(x) =  (a/(x−1)) +(b/(x+1))  + ((cx+d)/(x^2  +1))  g(−x)=g(x)⇔ ((−a)/(x+1))   +((−b)/(x−1))  +((−cx +d)/(x^2  +1))   = g(x) ⇒ b=−a  and c=0  ⇒  g(x)= (a/(x−1)) −(a/(x+1))  + (d/(x^2  +1))  g(0) = −1 = −2a +d  ⇒ 2a −d =1  g(2) = (1/(3 .5)) =(1/(15)) = a −(a/3) +(d/5) = ((2a)/3) +(d/5) ⇒  1 = 10a +3d  ⇒ 10a +3(2a−1) =1 ⇒  16a =4 ⇒ a = (1/4) and d =(1/2) −1=−(1/2)  g(x) =  (1/(4(x−1))) −(1/(4(x+1))) − (1/(2(x^2  +1))) ⇒  F(x)=  (1/(x^2  +1))  +(1/(4(x−1))) −(1/(4(x+1))) −(1/(2(x^2  +1)))  F(x)=  (1/(2(x^2  +1)))  + (1/(4(x−1))) −(1/(4(x+1)))
wehaveF(x)=x2(x21)(x2+1)=x21+1(x21)(x2+1)=1x2+1+1(x21)(x2+1)letdecomposeg(x)=1(x21)(x2+1)g(x)=ax1+bx+1+cx+dx2+1g(x)=g(x)ax+1+bx1+cx+dx2+1=g(x)b=aandc=0g(x)=ax1ax+1+dx2+1g(0)=1=2a+d2ad=1g(2)=13.5=115=aa3+d5=2a3+d51=10a+3d10a+3(2a1)=116a=4a=14andd=121=12g(x)=14(x1)14(x+1)12(x2+1)F(x)=1x2+1+14(x1)14(x+1)12(x2+1)F(x)=12(x2+1)+14(x1)14(x+1)
Commented by math khazana by abdo last updated on 19/Apr/18
∫_2 ^(+∞)   (x^2 /(x^4 −1))dx = (1/2) ∫_2 ^(+∞)    (dx/(1+x^2 ))  +(1/4) ∫_2 ^(+∞)  ((1/(x−1)) −(1/(x+1)))dx  = (1/2)[ arctanx^ ]_2 ^(+∞)    +(1/4) [ ln∣((x−1)/(x+1))∣]_2 ^(+∞)   =(1/2)( (π/2) −arctan2)   +(1/4)(−ln((1/3)))  =(π/4) −(1/2) arctan(2)  +(1/4)ln(3)  .
2+x2x41dx=122+dx1+x2+142+(1x11x+1)dx=12[arctanx]2++14[lnx1x+1]2+=12(π2arctan2)+14(ln(13))=π412arctan(2)+14ln(3).

Leave a Reply

Your email address will not be published. Required fields are marked *